Расчет освещенности помещения


Расчет освещения по площади помещения - алгоритм и удобные калькуляторы онлайн

Эффективное освещение жилых и подсобных помещений в доме или квартире, наряду с отоплением, вентиляцией, водоснабжением, энергообеспечением, с полным основанием можно отнести к системам, обеспечивающих комфортные условия проживания всех членов семьи. А если рассматривать боле масштабно, то наверняка будет прослеживаться прямая связь с уровнем безопасности создаваемых условий жизнеобеспечения. Согласитесь, нельзя не отметить влияние света на психоэмоциональное состояние человека, на степень его утомляемости в процессе выполнения тех или иных работ, на полноценность отдыха. Все это сказывается на текущем самочувствии, на общем состоянии организма, а при длительном негативном воздействии неправильно организованного освещения – впереди маячат вообще печальные перспективы с ухудшением зрения, другими расстройствами здоровья, которые будет уже не исправить. И в особенности это опасно для развивающегося организма детей.

Расчет освещения по площади помещения

Но, к сожалению, к вопросу правильной организации освещения весьма многие хозяева жилья относятся крайне легкомысленно. Им, должно быть, сложно преодолеть тот стереотип, который сложился у них когда-то – мол, на эту комнату хватит, например, примерно 100 ватт. Ну, во-первых, личные ощущения нередко бывают ошибочными. А во-вторых, оценивать уровень освещенности в единицах потребляемой энергии – это уже «позавчерашний день». Тем более что в наше время предлагается очень широкий выбор осветительных ламп, показатели светоотдачи которых на единицу потребленной энергии – кардинально различаются.

Поэтому предлагаем провести более грамотный расчет освещения по площади помещения, оперируя уже совершенно другими единицами измерения.

Небольшое «лирическое отступление» о важности правильного освещения

Когда-то давно, в конце 80-х годов, автор этих строк работал в составе довольно представительной комиссии Министерства Обороны СССР, проверявшей учетно-призывной работу и состояние подготовки молодёжи к военной службе в одной из областей Южно-Уральского региона. В одном из районов привлекло внимание, что процент ограниченно годных по состоянию здоровья из-за офтальмологических заболеваний – явно превышает среднестатистический.

В комиссии у нас был очень дотошный подполковник – военный медик, который на этом поприще «зубы съел». И он сразу заявил — так просто не бывает, стало быть имеется какая-то причина. Стали разбираться глубже – практически все призывники со стойким понижением остроты зрения, с аномиями рефракции, с астигматизмом – из одного довольно крупного и изрядно удаленного от райцентра села. Поразило объяснение представителей местного военкомата – «А у них в Кариновке сроду все слепые какие-то…»

Решили выехать на место, посмотреть поближе. И что увидели? В селе имелась школа – восьмилетка. В ней – всего три классных комнаты. И в каждой из них — пара совсем небольших окошек на улицу (что, в принципе, объяснимо с учетом суровости зимнего климата в этой безлесной степной зоне). Но всё освещение – это два патрона под потолком, в которых обычные лампочки накаливания по 75 ватт. Одним словом, в классе если и не полумрак, то явный дефицит освещенности.

И представьте, что все жители этого села в свое время проучились в таких условия по 8 лет! Естественно, это и дало тот самый результат, который насторожил проверяющих. Понятно, что был составлен акт о выявленных нарушениях элементарных санитарных норм, доложено в соответствующее инстанции областного и даже союзного уровня. Должно быть, были нешуточные последствия. Но здоровья тем людям, что потеряли его из-за безалаберности местных чиновников – этими административными мерами уже не вернешь.

Всё это было сказано с одной целью – не шутите с нормальным освещением в своем доме или квартире. Незаметные изначально негативные влияния на зрение (да и на психику тоже) имеют свойство накапливаться, и выливаться в такие последствия, которые уже невозможно будет исправить. Тем более, если речь идет о детях!

На чем основаны расчеты освещенности помещений?

Если быть корректнее с определениями, то предлагаемая методика расчета учитывает отнюдь не только площадь комнаты. Во внимание принимается целый ряд других важных критериев, отражающих специфику конкретного помещения.

Упрощенный метод расчета в единицах потребляемой мощности и его несовершенство

Еще не столь давно в сфере освещения полное господство принадлежало лампам накаливания. Здесь, судя по всему, и следует искать истоки укоренившейся привычки оценивать освещенность комнаты в единицах потребляемой для этого электрической энергии.

В продаже был представлен довольно стабильный ассортимент этих ламп 15; 25; 40; 60; 75; 100; 150 ватт и более. Любой из хозяев примерно знал, какой мощности лампы и в каком количестве ему необходимы для обеспечения освещения каждой из комнат. Естественно, чаще всего такая оценка проводилась субъективно, на основании личного опыта и восприятия, что далеко не всегда соответствовало норме.

Наверняка этот стереотип до сих пор прочно сидит у многих в голове – что освещенность измеряется в ваттах. И чем больше этих самых ватт, тем большего эффекта можно достичь установкой соответствующей лампы.

Принято было исходить примерно от нормы 15÷20 Вт на квадратный метр. Соответственно, в ходу и были, и даже остаются по сей день, примерно такие таблицы:

Тип помещенияСуммарная мощность ламп накаливания
Гостиная большой площади (около 18 м²)270÷350 Вт
Жилые комнаты средней стандартной площади150÷200 Вт
Кухня100÷150 Вт
Ванная75÷100 Вт
Санузел40÷60 Вт
Коридор, прихожая75÷100 Вт

Казалось бы – все просто, и чего еще желать? Однако, огорчим – подобные расчеты очень далеки от совершенства. И прежде всего по той причине, что ватт – это все же единица измерения потребляемой светильником энергии, а вовсе не создаваемого лампой светового потока. Безусловно, взаимосвязь есть, но назвать ее прямой зависимостью, подчиняющейся какому-то строгому соотношению – не получится. Это примерно так же, как оценивать скорость прибытия в конечный пункт назначения на том или ином междугороднем транспорте, исходя из стоимости билета – вроде бы величины взаимосвязаны, но некорректность оценки – налицо.

И тем более такая методика потеряла в своей и так не выдающейся точности с появлением успешных «конкурентов» ламп накаливания – люминесцентных и светодиодных. Здесь уже показатели потребляемой энергии и световой отдачи – совершенно иные.

Но старые привычки берут свое, и все равно самым распространенным способом у многих остается оценка именно по ваттам. Просто стали прибегать к таблицам, в которых показывается примерное соотношение параметров разных типов ламп с примерно одинаковым показателем световой отдачи. Пример такой таблицы показан ниже.

Площадь помещения, м²Обычные лампы накаливания, ВтЛюминесцентные лампы, ВтСветодиодные лампы, ВтПримерный световой поток, Лм
1205÷72÷3250
24010÷134÷5400
36015÷166÷10700
47518÷2010÷12900
510025÷3012÷151200
7÷815040÷5018÷201800
10÷1220060÷8025÷302500

В угоду такому «патриархальному» принципу оценки эффективности освещения, многие производители размещают на упаковках люминесцентных энергосберегающих и светодиодных ламп, помимо ее потребляемой мощности, примерный сравнительный «эквивалент» в ваттах для ламп накаливания. Характерный пример показан на рисунке ниже.

Принятая практика – показывать для светодиодных и люминесцентных ламп примерное соотношение с лампами накаливания. Но уже в самой формулировке на упаковке – заложена терминологическая ошибка.

Обратите внимание на слово «примерное», сказанное в предыдущем предложении. Оно упомянуто неслучайно, так как однозначной доступной системы «перевода одних ваттов в другие ватты» все же не существует. А почему? Повторимся – да не измеряется освещенность помещения или излучаемый источником световой поток в ваттах!

Кстати, на показанном выше примере на самой упаковке уже допущена серьезная ошибка. В частности – пишется «Светоотдача 60 Вт», что может сбить с толку незнающего человека, и он еще больше утвердится во мнении, что именно так и есть на самом деле. Наверное, было бы корректнее написать так: «Светоотдача примерно соответствует лампе накаливания в 60 ватт».

А в каких же единицах тогда будет правильно оценивать источник света? Обратите внимание: в таблице выше крайний правый столбец дает значение в люменах (лм) – вот это и есть единицы измерения светового потока, принятые в системе СИ. Если продолжить показанный выше пример, то, заглянув в паспорт продемонстрированной лампы, можно найти эту характеристику – 550 лм.

С люменами (лм) тесно взаимосвязаны другие единицы – люксы (лк), которыми в системе СИ как раз и измеряется освещенность. Взаимосвязь между ними такая: световой поток в 1 люмен создает на площади в 1 квадратный метр освещенность, равную 1 люкс.

Один люкс – это освещенность, которую создает на площади один квадратный метр источник со световым потоком в один люмен

В дальнейшем будем отталкиваться именно от этих единиц – люксов и люмен.

Нормы освещенности для жилых помещений

Для проведения расчета необходимо знать, от какой же «печки плясать».

Понятно, что в качестве одного из исходных значений будет фигурировать площадь помещения, в котором планируется организовать освещение. А вторым важнейшим параметром становятся санитарные нормы, устанавливающие уровень освещенности для комнат различного предназначения.

Каждому из помещений определены собственные нормативы освещённости. Так что при расчетах исходят далеко не только от площади комнаты.

Эти нормы четко прописаны в СНиП и СанПиН для практически всех категорий помещений, жилых и производственных, причем с детализацией даже по характеру производимых работ. Но нас в данном случае интересуют в большей степени те, с которыми приходится сталкиваться при расчетах системы освещения в своем доме или квартире.

Не станем отсылать читателя к «первоисточникам» — в таблице ниже приведены выписки, которых, наверное, будет вполне достаточно.

Тип (предназначение) помещенияНормы освещенности в соответствии с действующими СНиП, люкс
Жилые комнаты150
Детские комнаты200
Кабинет, мастерская или библиотека300
Кабинет для выполнения точных чертежных работ500
Кухня150
Душевая, санузел раздельный или совмещенный, ванная комната50
Сауна, раздевалка, бассейн100
Прихожая, коридор, холл50
Вестибюль проходной30
Лестницы и лестничные площадки20
Гардеробная75
Спортивный (тренажерный) зал150
Биллиардная300
Кладовая для колясок или велосипедов30
Технические помещения – котельная, насосная, электрощитовая и т.п.20
Вспомогательные проходы, в том числе на чердаках и в подвалах20
Площадка у основного входа в дом (крыльцо)6
Площадка у запасного или технического входа4
Пешеходная дорожка у входа в дом на протяжении 4 метров4

Вот от этих величин и станем исходить при проведении расчетов. Выраженных именно в люксах, а не в ваттах, «свечах» и т.п. Показанные нормы считаются оптимальными, поэтому не следует впадать в другую крайность – чрезмерно «заливать» помещения светом. Дело даже не в том, что это невыгодно с точки зрения экономии энергии. Слишком яркое освещение тоже вполне может стать весьма раздражающим фактором, негативно сказываться на эмоциональном состоянии, приводить к быстрой утомляемости глаз, чреватой серьёзными последствиями. Так что приведенные нормированные значения – это как раз та «золотая середина», к которой следует стремиться.

Проведение самостоятельного расчета освещенности

Ну вот, казалось бы, ясность получена. Нормы освещенности имеются, площадь помещения определить несложно. То есть нет проблем определить и суммарный световой поток, который должен обеспечить необходимую степень освещенности.

Например, гостиная площадью 14.5 квадратных метра. Несложно подсчитать, что для ее освещения необходимы источника света с общим световым потоком 15,5 м² × 150 лк = 2325 лм. А потом уже можно подобрать те светильники и лампы к ним, в нужном количестве, которые «справятся с задачей». Скажем, если исходить опять же из того примера лампы, что приводился выше (со световым потоком по паспорту в 550 лм), потребуется пять подобных ламп.

Действительно, упрощенные расчет выглядит именно так. Но вот должной точностью он все же не отличается – кроме площади, не принимаются во внимание другие особенности помещения, в частности, его отделка. Не учтен тип светильника, его расположение в пространстве комнаты, преимущественное направление светового потока, обусловленное положением источника света и типом применяемого плафона (рассеивателя).

Поэтому предлагаем иной алгоритм проведения вычислений. Он тоже не может в полной мере претендовать на «полный профессионализм», но все же результаты получаются намного точнее, ближе к действительности.

Общая формула расчета

Следует сразу правильно понять – предлагаемый алгоритм предполагает расчет именно основного освещения. Сюда не следует относить декоративные подсветки, которые пользуются в наше время широким спросом при интерьерном оформлении комнат. Не входят в расчет и отдельные осветительные приборы, дающие локальную подсветку конкретной ограниченной области (например, прикроватные бра).

Итак, основной формулой, на которой строится расчет, будет следующая:

Fл = (Ен × Sп × k × q) / (Nc × n × η)

Разбираемся с параметрами, входящими в формулу:

Fл — искомая величина, то есть показатель светового потока, которым должна обладать каждая из ламп, устанавливаемых в светильники. Значение будет получено в люменах.

Ен — нормы освещенности жилых и подсобных помещений. Именно те, что показаны в таблице выше (в люксах), в соответствии с действующими СНиП.

Sп — площадь помещения, для которого производится расчет (м²). этот параметр самостоятельно вычислить несложно – в подавляющем большинстве случаев помещения прямоугольные. Но даже если комната имеет более сложную конфигурацию – нужно лишь разбить общую площадь на более простые участки и вспомнить основные правила геометрии.

Если есть затруднения с расчетом площадей – вам сюда…

Иногда необычная конфигурация помещения может озадачить хозяина, несколько подзабывшего законы геометрии. Не беда – мы можем помочь! Перейдите по ссылке к статье, посвященной расчету площадей – там и подробные описания различных случаев, и удобные калькуляторы, упрощающие проведение расчетов.

k — это поправочный коэффициент, который еще называют коэффициентом запаса. Он учитывает сразу несколько факторов. Так, некоторые лампы имеют свойство по ходу эксплуатации тускнеть, терять в излучаемом световом потоке. Причем это снижение интенсивности свечения неодинаково для разных типов ламп. Кроме того, поправка учитывает степень помех для нормального распространения света. Правда, это касается в большей мере производственных помещений, где могут быть высокие уровни запыленности или концентрации пара. Если исходить из того, что у хороших хозяев в доме такого не наблюдается, то коэффициент запаса можно принять равным:

Типы лампКоэффициент запаса
Газоразрядные (люминесцентные) лампы1.2
Лампы накаливания, обычные и галогенные1.1
Светодиодные лампы1

q — коэффициент неравномерности свечения. Эта величина особо важна при расчетах освещенности помещений, где планируется проведение точных работ, связанных с черчением, операциями с мелкими деталями, с большим объёмом чтения или набора текстов или выполнения рукописных записей.

Значения показаны в таблице ниже:

Тип применяемых лампЗначение коэффициента неравномерности свечения
Лампы накаливания любые1.15
Ртутные газоразрядные лампы1.15
Цокольные люминесцентные лампы (энергосберегающие)1.1
Светодиодные лампы1.1

Nc — планируемое к установке количество светильников.

n — количество ламп (рожков) в одном светильнике.

Произведение последних двух параметров, вполне понятно, показывает общее количество ламп, которые будут участвовать в освещении помещения. Если планируется только один источник света, то, естественно, в формулу и там и там подставляются единицы.

При таком подходе, кстати (когда Nc = n = 1), можно определить и вообще весь суммарный световой поток, потребный для качественного освещения. Иногда целью расчета ставится именно это – а потом хозяева начинают «колдовать» над оптимальным размещением ламп или светильников различных номиналов, в соответствии с дизайнерской задумкой интерьерного оформления.

η — коэффициент использования светового потока.

Эта величину определить несколько сложнее – здесь придется учесть несколько критериев. Поэтому вынесем ее в отдельный подраздел статьи.

Определение коэффициента использования светового потока η

Эту величину можно определить по таблицам. Но прежде придётся разобраться с параметрами входа в эти таблицы.

  • Для начала – определим промежуточный параметр. Его обычно называют индексом помещения. Он в необходимой степени учтет и размеры комнаты, и планируемую высоту расположения источника света. Вычисляется этот индекс по следующей формуле:

i = Sп / ((a + b) × h)

i — искомая величина, то есть индекс помещения.

Sп — уже ранее фигурировавшая в расчётах площадь комнаты (м²)

a и b — соответственно, длина и ширина помещения (м).

h — предполагаемая высота размещения источника света. Важный нюанс – не путать с высотой потолка в комнате! Имеется в виду именно высота светильника над поверхностью пола.

К примеру, планируется к установке подвесной светильник с длиной подвеса (или штанги), равной 0,6 м. А высота потолка в помещении – 3 метра. Значит, значение h для подстановки в формулу равно 3,0 – 0,6 = 2,4 м.

Провести арифметические вычисления нетрудно. Но еще проще – воспользоваться предлагаемым онлайн-калькулятором.

Калькулятор для определения индекса помещения

Перейти к расчётам

После того как индекс помещения рассчитан, его следует округлить в большую сторону до ближайшего значения из числа тех, что указаны в следующем списке:

0,5;  0,6;  0,7;  0,8;  0,9;  1,0;  1,1,  1,25;  1,5;  1,75;  2,0;  2,25;  2,5;  3,0;  3,5;  4,0;  5,0

Итак, один параметр для входа в таблицу у нас уже имеется.

  • Идем дальше – теперь необходимо оценить отражающую способность поверхностей, в соответствии с имеющейся (или планируемой) интерьерной отделкой.

Коэффициенты отражения принимаются равными:

Оттенки интерьерной отделкиКоэффициент отражающей способности
Белый цвет70%
Светлые тона50%
Средние тона30%
Темные тона10%
Черный цвет0%

Теперь необходимо в последовательности «потолок — стены — пол» записать значения этого коэффициента. Это – не так сложно. По сути, с белым цветом все однозначно. Другая крайность, то есть глубокий черный цвет, в интерьерном оформлении на больших площадях, как правило, не применяется. Значит, весь выбор органичен всего тремя вариантами – 50, 30 или 10%. Доля субъективности в оценке, безусловно, есть, но допустить сколь-нибудь серьезную ошибку – трудно.

Например, потолок белый, стены – свело-бежевые, пол – коричневый. Получится 70% — 50% — 10%.

  • Далее, следует учесть тип светильника, и уже по нему выбрать таблицу, по которой и будет определяться искомое значение коэффициента использования светового потока η.

Возможные варианты светильников и соответствующие таблицы к ним сведены в следующую таблицу (простите за тавтологию).

Особенности осветительного прибора и его размещенияИллюстрацияТаблицы для определения коэффициента использования светового потока. (Выбранная таблица увеличится при клике мышкой).
Светильник размещён непосредственно на поверхности потолка. Основное направление света – вниз.
Светильник подвешен на потолке или на стене, оснащен плафоном дающим преимущественное распространение света вниз.
Светильники подвесные с плафонами, обеспечивающими равномерное распределение света по всем направлениям. Такой же эффект дает и просто повешенные лампы без плафона
Светильники с плафонами, преимущественно направляющими свет в сторону потолка, для отражения от потолочной поверхности.
Светильники с малопрозрачными или непрозрачными плафонами, дающими узкий направленный поток света в выделенной области.

  • Все данные для входа в таблицу у нас имеются. А определить по ней коэффициент использования светового потока – совсем несложно.

Просто для примера:

— Планируется к установке подвесной светильник шарообразной формы, изучающий свет во все стороны. Открываем соответствующую таблицу (все таблицы увеличиваются кликом мышки).

— Предварительно проведённый расчет показал, что индекс помещения, округленный в большую сторону, равен 1,25.

— Заранее были определены коэффициенты отражающей способности: те самые 70% — 50% — 10%.

— Входим в таблицу. Для этого вначале по коэффициентам отражения находим нужный столбец:

Принцип пользования таблицей для определения коэффициента использования светового потока

— В крайнем правом столбце находим значение индекса помещения – 1,25. Это задаст строку.

— Пересечение строки и столбца приводит нас к искомому значению коэффициента использования светового потока η. В данном примере он равен 0,55.

Вот теперь у нас собраны уже все данные для основной формулы, позволяющей провести окончательный расчет необходимого светового потока для полноценного освещения комнаты.

Узнайте, для чего нужна подсветка пола и как сделать её самостоятельно из нашей новой статьи на нашем портале.

Чтобы не утруждать читателя расчетами, предлагаем ему воспользоваться встроенным онлайн-калькулятором.

Калькулятор расчёта необходимого светового потока

Перейти к расчётам

Итак, полученное значение нам прямо показывает, какими световым потоком должны обладать лампы, которые в данных условиях обеспечат полноценное освещение помещения. Или как мы уже говорили, если указать число светильников и ламп, равное единице, будет получено значение суммарного светового потока – и по нему можно ориентироваться при расстановке приборов освещения.

Для некоторых участков, например, рабочего стола или верстака в мастерской, можно тоже подойти с таким расчетом, но уже исходя из площади конкретной рабочей зоны, если для этих целей будет применяться отдельный светильник. При этом можно даже не учитывать общее освещение – если предполагается, что локального должно быть вполне достаточно для создания комфортных рабочих условий даже при выключенной основной подсветке комнаты.

А теперь давайте хотя бы вкратце посмотрим на основные характеристики наиболее распространенных ламп.

Что важно знать о лампах для осветительных приборов

Общие характеристики осветительных ламп

Если величина требуемого светового потока просчитана, то можно переходить к подбору ламп. Некоторые светильники не предполагают особого выбора – они напрямую рассчитаны под установку какого-то конкретного типа. Но большинство приборов все же позволяют рассмотреть несколько вариантов.

  • Все лампы, независимо от их типа, могут различать цоколем. И если в планах хозяев уже намечены те или иные осветительные приборы, то выбор сузится конкретным типом цоколя.

На рисунке показано только несколько наиболее распространенных типов цоколей ламп. На самом деле их разнообразие этим перечнем не ограничивается.

В крупных светильниках чаще всего применяются резьбовые цоколи серии Е. А вот у приборов точечной подсветки может быть различное исполнение патронов — на это следует заранее обратить внимание.

  • Потребляемая мощность – то есть количество энергии, которая затратит лампа при работе с полной нагрузкой за единицу времени. Здесь, как мы уже видели из таблиц выше, у различных типов ламп с равным показателем светового потока – очень большой разброс. Подробнее на этом остановимся чуть позже, при разборе конкретных типов ламп.
  • Напряжение питания. Далеко не все лампы способны работать непосредственно от сети 220 В 50 Гц. Некоторые рассчитаны на подключение через понижающий трансформатор, например, на 12 В. Кроме того, отдельные разновидности требуют постоянного тока, то есть здесь важна еще и полярность подключения. Как правило, светильники с такими лампами комплектуются специальными блоками питания или драйверами, с разъемами, исключающими ошибки подключения. Это следует учитывать, так как для дополнительного оборудования придётся предусматривать место его скрытого размещения.
  • Температура света. Это, сразу скажем, условная величина, которая к температуре нагрева лампы никакого отношения не имеет. Показатель температуры света характеризует визуальный эффект восприятия источника. С чисто физической точки зрения – это свечение абсолютно темного тела, разогретого до определённой температуры (выраженной по шкале Кельвина).

Лучше не вдаваться в рассуждения, а предложить наглядную таблицу – с ней все должно стать понятно:

Шкала, которая поможет с выбором лампы по температуре ее свечения

Когда-то, в эпоху полного господства ламп накаливания, о такой величине практически не вспоминали, и на маркировке ламп она чаще всего даже не указывалась. Сегодня же практически все изделия, любых типов, в перечне характеристик имеют и этот показатель.

Вот, например, что указано на упаковке произвольно взятой лампы:

Практически все необходимые характеристики можно отыскать на упаковке лампы.

1 — тип цоколя.

2 — потребляемая мощность (и примерный эквивалент потребляемой мощности лампы накаливания с такой же светоотдачей).

3 — температура свечения: в данном случае 4100 К.

4 — световой поток лампы, выраженный в люменах (540 лм).

Выбор лампы по температуре свечения, безусловно, делает сам покупатель, руководствуясь личными соображениями и предпочтениями. Но все же некоторые рекомендации станут нелишними.

Оптимальным диапазоном для восприятия, не вызывающим раздражения и быстрого утомления глаз, считаются температуры от 2600 до 5000 К. Иногда устанавливают лампы и с более высокой температурой свечения – когда это необходимо в связи с особенностями предназначения помещения.

Диапазон цветовой температурыПримерное восприятиеГде рекомендуется использовать
2600 ÷ 3000 КТеплый свет с красновато-оранжевым оттенком.Создание уютной атмосферы в спальной или гостиной. Отлично подходит для прикроватных светильников, торшеров, установленным в местах отдыха хозяев.
3000 ÷ 3500 КТеплый свет с желтоватым оттенком.Основное освещение жилых комнат, детской. Хорошо подойдет для рабочего стола ребенка.
3500 ÷ 4000 КДневной белый светОсновное освещение помещений квартиры, в том числе в подсобных и специальных помещениях. «Холодноват» для постоянного восприятия.
4000 ÷ 5000 КХолодный белый светИногда применяется для некоторых стилей интерьерного оформления (типа хай-тек), но уютную обстановку не создает – явное ощущение «больничной обстановки». Подойдет для освещения подсобных помещений, придомовой территории.
5000 ÷ 6000 КХолодный свет с бело-синим оттенкомИспользуется для офисного освещения на больших площадях, в производственных помещениях. Может быть применен в мастерской для выполнения тонких работ, в чертежном кабинете. Нередко находит применение в подсветке теплиц, оранжерей и т.п. Способен вызывать утомляемость глаз. В жилых помещениях не используется.
Свыше 6000 КХолодный белый с глубоким синим или сиреневым оттенком.Только для уличного освещения. В жилых и специальных помещениях применения не находит.

  • Наконец, созываемый лампой световой поток – именно та величина, которую мы рассчитывали с помощью калькулятора. Этот показатель должен быть указан на упаковке, на самой лампе или в ее паспорте.

Ниже вкратце пройдемся по основным типам осветительных ламп. Там будут приведено несколько таблиц с параметрами. Следует правильно понимать, что эти данные взяты исключительно для примера, и могут соответствовать только определенным моделям ламп. То есть раскрыть все разнообразие этих изделий в масштабе одной статьи – просто невозможно. В любом случае при выборе ламп следует внимательно изучать их паспортные характеристики.

Лампы накаливания

Когда-то господствовавшие безраздельно, они постепенно «сходят со сцены». Достоинство – низкая стоимость. А недостатков – хоть отбавляй. Крайне низкий КПД (обычно не превышающий 5%), то есть большая часть потребленной энергии уходит в совершенно ненужный нагрев. Срок службы – невысок, редко превосходит 1000 часов.

Ниже на иллюстрациях и в таблице представлены основные характеристики таких ламп. Оборите внимание на параметр световой отдачи – сколько люмен выдает изделие с каждого затраченного ватта потребленной энергии. Это напрямую влияет на экономичность использования того или иного типа ламп.

Всем знакомые лампы накаливания с прозрачной колбой

Показанная модель обладает температурой свечения порядка 2800 К (теплый свет). Класс энергопотребления – Е.

Характеристики в зависимости от мощности:

Потребляемая мощность лампы (Вт)Световой поток (лм)Световая отдача (лм/Вт)
10505,0
252208,8
4041510,4
6071011,8
7593512,5
95130013,6
100134013,4

Лампы накаливания могут иметь и матовое исполнение стекла, для оптимального рассевания света. Правда, от этого несколько снижаются показатели светового потока.

Лампа накаливания с матовой колбой, с температурой свечения 2700 К.

Примерные характеристики показаны в таблице:

Потребляемая мощность лампы (Вт)Световой поток (лм)Световая отдача (лм/Вт)
403849.6
605949.9
7578810.5
95129013.5

Хотя лампы накаливания все еще широко представлены в продаже и привлекают невысокой стоимостью, все же они не являются оптимальным вариантом. Лучше выбирать что-нибудь более современное и эффективное.

Галогенные лампы

Галогенные лампы, по сути, работают тоже по принципу накала спирали. Однако имеют особенности в исполнении. В частности, это касается особого кварцевого стекла, способного выдержать очень высокие температуры нагрева, и заполнения колбы – здесь используются пары йода и брома, существенно повышающие долговечность спирали.

Выпускаются эти лампы в очень широком разнообразии, но в условиях дома или квартиры обычно находят применение компактные модели, рассчитанные на точечные светильники. Реже применяются осветительные приборы по типу прожекторов – обычно для освещения территории или построек сельскохозяйственного предназначения.

К достоинствам таких ламп относят их более высокий (по сравнению с обычными накаливания) КПД. Продолжительность службы доходит до нескольких тысяч часов. Привлекают компактность при высоких показателях световой отдачи, хорошо воспринимаемый диапазон световых температур – обычно в рамках 2800 ÷ 3000 К.

Недостатки тоже немалые.  Это очень высокие температуры нагрева во время работы. Лампы требуют очень бережного отношения при установке — касание рукой кварцевой колбы вызовет быстрое перегорания прибора. Стоимость «галогенок» – значительно выше, чем ламп накаливания. Газы, применяемые для наполнения колбы нельзя отнести к разряду безвредных. Так что налицо еще и проблема с безопасностью и с утилизацией отработавших ламп.

Для примера – одна из линеек галогенных ламп. Напряжение питания – 12 В. Цоколь — GU4. Температура свечения – 3000 К. Класс энергопотребления – В. Примерный срок службы – до 1500 часов.

Компактные галогенные лампы для точечных светильников

Характеристики этого модельного ряда показаны в таблице. Обратите внимание: здесь и далее появляется еще один столбец – примерное соответствие обычной лампе накаливания.

Потребляемая мощность лампы (Вт)Световой поток (лм)Световая отдача (лм/Вт)Примерный эквивалент мощности лампы накаливания (Вт)
101501513
203001526
355251546
507501565
7511251575
100150015130
150225015150

Галогенные лампы могут применяться при освещении жилых помещений, но до оптимального варианта им все же далеко. Количество недостатков велико, показатели энергосбережения – не выдающиеся.

Люминесцентные лампы

Раньше этот тип был представлен хорошо известными всем длинными трубчатыми лампами. Довольно широко применяются они и теперь. Но все же в сфере домашнего освещения более популярными являются компактные лампы с цоколями под стандартные патроны. В обиходе они получили наименование «энергосберегающих». И действительно, еще до появления и широкого распространения светодиодных источников, такие лампы произвели буквально «революцию» в плане экономичности затрат на освещение домов и квартир.

Стеклянная колба таких ламп заполняется специальной смесью газов, которые при создании определённых условий вызывают свечение люминофора.

К достоинствам таких ламп можно отнести высокие показатели светоотдачи при умеренном потреблении электрической энергии. Они представлены в весьма широком диапазоне цветовых температур. Срок службы может доходить до нескольких тысяч часов.

Одна, и недостатков у них достаточно. Так, в заполнении колбы практически всегда присутствует ртуть – чрезвычайно опасный для здоровья человека химический элемент. То есть лампы требуют особого бережного отношения и правильной утилизации. КПД лампы хоть и высок, но все же далек от идеала – до 25% потребленной энергии расходуется на создание условий для появления свечения. Нередко заметно мерцание света, которое может усиливаться по мере постепенного технологического износа. Иногда отмечается неравномерность создаваемого светового потока, которая даже может визуально искажать восприятие натуральных цветов предметов. Лампы могут обладать инерционностью – для выхода в нормальный режим работы им требуется определенной время.

Для примера – характеристики одного из модельных рядов компактных люминесцентных ламп. Питание – 220 В. Цветовая температура – 2700 К. ориентировочный срок службы – от 8 до 10 тысяч часов. Класс энергопотребления – А.

Компактная люминесцентная лампа с цоколем Е40.

Потребляемая мощность лампы (Вт)Световой поток (лм)Световая отдача (лм/Вт)Примерный эквивалент мощности лампы накаливания (Вт)
94505045
115354855
136655156
158005375
20117058100
26152558125
30190063150
35228565175
45308068225
55380069275
85670078425
105690065525

Применение таких ламп для освещения дома или квартиры можно считать вполне оправданным. И в се же по степени удобства, безопасности, долговечности, экономичности они проигрывают светодиодным.

Светодиодные лампы

Про разнообразие светодиодных ламп впору писать отдельную статью – настолько оно широко. Но при любом раскладе – их можно считать самым удачным вариантом среди всех упомянутых выше.

К достоинствам светодиодных ламп прежде всего относится высокая светоотдача при минимальном потреблении электрической энергии. КПД таких изделий обычно выше 90% — на ненужный нагрев расходуется совсем незначительное количество энергии. То есть эффект экономии – наивысший. Лампам могут придаваться любые формы, вплоть до самых компактных. Отсутствие деталей из кварцевого стекла делает такие изделия прочными, не боящимися умеренных ударных воздействий. Долговечность ламп оценивается десятками тысяч часов. Разнообразие используемых светодиодов позволяет исполнить лампу с практически любой температурой свечения. Само изделие не содержит никаких вредных для человека или окружающей среды веществ.

Недостатки светодиодных ламп, отмечаемые потребителями, по большей мере связаны с некачественным изготовлением. Приходится констатировать, что этот сегмент рынка насыщен низкопробными изделиями или даже подделками под известные бренды. Так что приобретать светодиодные лампы лучше в проверенных торговых точках, с заполнением паспорта и простановкой срока гарантии.

К недостаткам нередко относят высокую стоимость светодиодных ламп. Однако, во-первых, она оправдывается большим ресурсом работы и выраженно низким потреблением энергии. По сути, именно эти лампы в большей мере заслуживают названия «энергосберегающие», но уж как сложилось… А во-вторых, технологии изготовления не стоят на месте, и стоимость таких источников света в последние годы существенно снизилась, уже не выглядит пугающей. И эта тенденция удешевления светодиодных ламп пока не прекращается.

В таблице ниже будут показаны характеристики одного из модельных рядов – просто для сравнения.

Светодиодная лампа с «классической» формой колбы и со стандартным цоколем Е27.

Температура свечения – 3000 К. Класс энергопотребления – А. Ориентировочный срок службы лампы – до 40 тысяч часов.

Потребляемая мощность лампы (Вт)Световой поток (лм)Световая отдача (лм/Вт)Примерный эквивалент мощности лампы накаливания (Вт)
32508340
42807040
53406840
64407350
75207460
85506865
108508575
1211709795
161600100150
202100105200

Одним словом, светодиодные лампы могут по праву считаться оптимальным вариантом. И разумнее всего на стадии создания своей системы освещения не пожалеть средств именно на них. Нет никаких сомнений, что эти затраты будут полностью оправлены.

Несколько рекомендаций напоследок

При планировании системы освещения помещений рекомендуется придерживаться еще нескорых советов, которыми делятся опытные мастера.

  • Понятно, что расчеты, приведенные выше, направлены на создание освещенности, соответствующей установленным санитарным нормам. Но довольно часто такое количество света становится избыточным – просто исходя из текущего настроения, от желания отдохнуть хочется более приглушенной подсветки. Это, конечно, можно организовать «параллельной системой» — расположенными в нужных местах приборами локального освещения. Типичный пример – прикроватные бра. Но все равно, рекомендуется и основную систему освещения не делать с единственным источником света – в наше время в продаже достаточное разнообразие светильников, рассчитанных на несколько ламп. По мере необходимости можно будет задействовать только требуемое их минимальное количество.

Диммер – удобное устройство, дающее возможность плавно регулировать интенсивность светового потока

Кроме того, большую степень удобства в регулировках предоставляют диммеры – специальные приборы, способные плавно изменять интенсивность свечение ламп. При наличии желания, должного креатива и доступных средств, «диммирование» даже в масштабах одного просторного помещения можно дополнительно разбить по зонам.

Правда, следует иметь в виду, что далеко не все лампы поддаются такой регулировке. Например, с люминесцентными лампами подобный «номер» не проходит.

  • Не приветствуется использование в одном помещении ламп различных типов – эффект может быть совершенно непредсказуемым, но однозначно – негативным.
  • Выше немало говорилось про потребляемую мощность ламп. В частности – про то, что она не должны становиться определяющим критерием при расчетах освещенности. Тем не менее, знать этот параметр необходимо. Дело здесь не в световых параметрах ламп, а в эксплуатационных возможностях планируемых к установке светильников.

Дело в том, что эти приборы имеют определённый предел по возможной электрической нагрузке. Во-первых, внутри их проложены провода, обычно – весьма небольшого сечения, и при слишком большой суммарной мощности ламп не исключается перегрев проводки, со всеми вытекающими последствиями. А во-вторых, в большинстве своем светильники собраны из полимерных деталей. Как мы видели, некоторые типы ламп значительное количество потреблённой энергии преобразуют в тепловую. И перегрев может вызвать размягчение, плавление пластика, деформацию деталей.

Так что при выборе ламп необходимо стразу просуммировать значение их мощностей. И если оно превосходит допустимый предел для конкретного светильника, придется подыскивать какое-то иное решение.

Для этой люстры, например, производитель установил порог суммарной мощности в 240 Вт. То есть шесть лампочек накаливания по 60 ватт в нее устанавливать никак нельзя.

  • Если в результате проведенных расчетов получается такое значение светового потока лампы, которого просто нет в выпускаемом ассортименте, или же использование ламп становится невозможным по иным причинам (например, та же недопустимо завышенная потребляемая мощность), то ничего не поделаешь – придется пересматривать свою систему. Обычно это решается увеличением количества светильников, применением других типов ламп, другими методами. Выход обязательно найдется!

*  *  *  *  *  *  * В завершение публикации – небольшой видеосюжет, который, возможно, позволит несколько расширить понятия читателей в области расчета оптимального освещения для жилых помещений.

Видео: Сколько света необходимо для комфортной и здоровой обстановки в комнате?

stroyday.ru

Как самостоятельно выполнить расчет освещенности помещения

В электрике существует такое понятие как, расчет освещенности помещения. Данный расчет является фундаментом всей осветительной части электропроводки, поэтому ему следует уделить особое внимание. В этой статье мы подробно разберем:

  • Зачем делать расчет освещенности помещения?
  • А также рассмотрим пошаговое выполнение расчёта освещённости на конкретном примере

Теперь, обо всем по порядку.

Зачем делать расчет освещения?

В первую очередь, данный расчет необходим, для создания достаточной освещенности помещения, которая в свою очередь обеспечивает благоприятные и комфортные условия для жизнедеятельности человека.

Недостаток освещения или его чрезмерность, вызывает сильное напряжение глаз, быструю утомляемость и оказывает ощутимый психологический дискомфорт, что неблагоприятным образом отражается на здоровье человека в целом.

Идеальным освещением для наших глаз, является естественный природный свет (дневное, утреннее или вечернее солнце, солнце за облаками).

Основной задачей расчета освещенности помещения, является максимальное приближение искусственного освещения к естественному. К искусственному освещению относиться такой свет, которым человек имеет возможность управлять.

Электрический свет, является искусственным, он получается в результате преобразование электрической энергии в один из видов электромагнитного излучения, которое воспринимается человеческим глазом как свет. Именно такое преобразование происходит внутри ламп установленных в корпусах осветительных электроустановок (светильники, люстры, бра, торшеры и так далее).

В строительно-проектировочной документации(СНиП) существуют специальные правила, в которых прописаны нормы освещенности для различных видов помещений. Ниже рассмотрен пример, пошагового выполнение расчета с подробными комментариями и пояснениями.

Расчет освещения, пример

Расчет освещенности помещения производиться по формуле:

Для удобства запишем ее так:

Фл = (Ен * S * k * z) / (N * η * n)

где,

1. Фл – световой поток лампы,

2. Ен – норма освещенности

3. S – площадь помещения

4. k - коэффициент запаса

5. z – поправочный коэффициент

6. N – количество принятых светильников

7. η – коэффициент использования светового потока

8. n – число ламп в светильнике.

Данные нашего примера:

  • Жилая комната.
  • Длина – 5,5 м,
  • Ширина – 3,5 м.
  • Потолок - белый крашенный,
  • Стены – обои, светлые однотонные (без рисунка) персикового оттенка,
  • Пол – линолеум, серого цвета

Планируется установка пяти рожковой люстры, с пятью лампами, каждая из которых монтируется внутри плафона, изготовленного из белой матовой ткани во весь размер лампы.

Данная комната имеет стандартную высоту потолков 2,5 м. Опираясь на конструктивное исполнение светильника определяем высоту его подвеса. Для нашего примера эти данные будут следующими:

  •  высота установки люстры от пола до плафонов в которых установлены лампы - 2,3 м

Теперь найдем все необходимые для расчетов данные.

2. Ен - нормированная освещенность

Измеряется в Люксах (Лк), является нормированной величиной, прописанной в своде правил строительной документации СНиП. Ниже представлена таблица норм освещенности.

Таблица №1. Рекомендуемые нормы освещенности жилых помещений, согласно СНиП 23-05-95

Помещение нашего примера - жилая комната. Согласно таблицы №1 нормируемая освещенность для данного вида помещений равна 150 Люкс (Лк).

Ен = 150

Подставим значение в формулу:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * S * k * z) / (N * η * n)

3. S – площадь помещения

Для выполнения последующих расчетов нам потребуется знать площадь данной комнаты. Посчитать ее мы можем по формуле площади прямоугольника:

S = а * b,

где,

  • S - площадь помещения (метры квадратные - м2)
  • а - длина помещения (метры квадратные - м2), в нашем примере 5,5 м
  • b - ширина помещения (метры квадратные - м2), в нашем примере 3,5 м

Подставим наши значения

S = a * b = 5,5 * 3,5 = 19,25 м2

S = 19,25

Подставим данные в формулу:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * k * z) / (N * η * n)

4. k - коэффициент запаса

Коэффициент запаса (зависит от типа ламп и степени загрязненности помещения) Коэффициент запаса k учитывает запыленность помещения, снижение светового потока ламп в процессе эксплуатации. Значения коэффициента k приведены в таблице.

Таблица №2. Коэффициент запаса для жилых помещений для различных типов ламп

В нашей люстре планируется использование светодиодных ламп, выбираем коэффициент запаса равный 1.

K = 1.

Подставим значение в формулу:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * 1 * z) / (N * η * n)

5. z – поправочный коэффициент (коэффициент неравномерности)

z - поправочный коэффициент, применяемый в помещениях где требуется освещенность больше чем нормируемая минимальная

Данный коэффициент следует применять в помещениях где планируется выполнение точной зрительной работы, например, читать или писать.

Для ламп накаливания и ДРЛ (ртутная газоразрядная лампа) z = 1,15, для люминесцентных и светодиодных ламп z = 1,1

В наш светильник будут установлены светодиодные лампы, используем поправочный коэффициент 1,1.

z = 1,1

Вставляем данные в формулу:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * 1 * 1,1) / (N * η * n)

6. N – количество принятых светильников

Освящать комнату будет один светильник, расположенный в центре помещения.

N = 1

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * 1 * 1,1) / (1 * η * n)

7. η – коэффициент использования светового потока

Для того что бы найти коэффициент использования светового потока нам потребуется рассчитать индекс помещения – i.

Воспользуемся следующей формулой:

i = S / ((a + b) * h)

где,

  •  i - индекс помещения,
  • S - площадь помещения (метры квадратные - м2), - в нашем примере 19,25 м2;
  • а - длина комнаты (метры квадратные - м2), - в нашем примере 5,5 м;
  • b - ширина комнаты (метры квадратные - м2), - в нашем примере 3,5 м;
  • h - высота подвеса светильника от пола (метры - м), - в нашем примере 2,3 м;

Считаем:

i = S / ((a + b) * h) = 19,25 / ((5,5 + 3,5) * 2,3) = 19,25 / (9 * 2,3) = 19,25 / 20,7 = 0,929...

округляем до значения близкого к:

0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 3, 3.5, 4, 5

В нашем случае это значение 0.9

Теперь нам потребуются данные о дизайне нашей комнаты. Конкретно интересуют три вещи пол, потолок и стены их цветовой оттенок в формате белый - светлый - темный - серый - черный. Например, бежевые стены будут относиться к светлым, красные, вишневые, коричневые к темным, с черным и белым и так все понятно.

Эти оттенки называются коэффициентом отражения (Р) и выражаются в процентном соотношении следующим образом:

  • 70% - белый
  • 50% - светлый
  • 30% - серый
  • 10% - темный
  • 0% - черный

Комната, приведенная в нашем примере, имеет:

  •  Потолок - белый крашенный, в процентном соотношении 70% (белый)
  • Стены – обои светлые, однотонные, (без рисунка) персикового оттенка, в процентном соотношении 50% (светлый)
  • Пол – линолеум серого цвета, в процентном соотношении 30% (серый)

Обладая всеми этими данными, мы можем определить коэффициент использования светового потока светильника - η.

Для этого воспользуемся соответствующей нашему светильнику таблицей, одной из 5 (таблицы №3-7) приведенных ниже.

Наш светильник за счет конструктивного исполнения плафонов (матовая белая ткань) имеет равномерное распределение светового потока, поэтому данные по нему ищем по таблице №5. Ниже приведены 5 таблиц в которых изложены данные для определения светового потока, после которых будет детально разобрана инструкция с описанием того как ими пользоваться.

Таблица №3. Коэффициент использования для потолочного светильника

Таблица №4. Коэффициент использования для подвесного светильника

Таблица №5. Коэффициент использования для светильника с равномерным освещением

Таблица №6. Коэффициент использования для светильников с косинусным распределением светового потока

Таблица №7. Коэффициент использования для светильников с глубокими плафонами

Напомню, светильник нашего примера является равномерным, относится к Таблице №3.

Комната, приведенная в нашем примере, имеет:

  • Потолок - белый крашенный, в процентном соотношении 70% (белый)
  • Стены – обои светлые однотонные (без рисунка) персикового оттенка, в процентном соотношении 50% (светлый)
  • Пол – серый линолеум, в процентном соотношении 30% (серый)

i - который мы рассчитывали выше по формуле, i = S / (a + b) * h)) = 0.9

В правой вертикальной колонке таблицы ищем соответствующий рассчитанному – i.

В горизонтальных строках подбираем данные комнаты, соответствующие нашим:

Совмещаем линии P и i.

η = 0.51

Подставим полученные данные в формулу:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * 1 * 1,1) / (1 * 0.51 * n)

8. n – число ламп в светильнике

Люстра в нашем примере пяти рожковая, в ее конструкции предусмотрена установка 5 ламп.

n = 5

Вставляем данное значение в формулу:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * 1 * 1,1) / (1 * 0.51 * 5)

Все необходимые значения найдены, теперь мы можем рассчитать Фл – световой поток лампы.

Считаем:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * 1 * 1,1) / (1 * 0.51 * 5) = 3176,25 / 2,55 = 1245,58…

Округлим 1245,58 до целого значения, получим 1246.

Световой поток лампы измеряется в Люменах (Лм), готовый результат запишем как:

Фл = 1246 Лм

Каждая лампа нашего светильника должна иметь световой поток равный 1246 Лм.

Далее, мы рассмотрим, каким образом выбрать лампу зная ее световой поток, но для начала сделаем небольшое отступление.

В настоящее время на рынке электрической продукции представлены следующие лампы:

  • Лампа накаливания
  • Галогенная лампа
  • Светодиодная лампа
  • Люминесцентная лампа
  • Компактная люминесцентная лампа
  • Газоразрядная лампа

Каждая из этих ламп имеет свои характеристики, особенности, преимущества и недостатки. Поэтому, делая выбор в сторону конкретной лампы нужно учитывать следующие вещи:

  • Мощность лампы
  • Нагрев корпуса (для ламп накаливания и галогенных ламп)
  • Световой поток
  • Цветопередачу

Эти данные (кроме температуры нагрева корпуса) указаны заводом изготовителем на упаковочной коробке лампы, опираясь на них, мы можем выбрать требуемую освещенность для конкретного помещения.

Мощность лампы – определяет, количество потребляемой электроэнергии, измеряется в Ватах (Вт)

Световой поток – излучаемое лампой количество света, измеряется в Люменах (Лм).

Цветопередача – состоит из цветовой температуры и оттенка. Цветовая температура измеряется в диапазоне от красного 1800 К – до синего 16 000 К цвета.

Чем меньше значение, тем цветность ближе к красному, чем больше, тем ближе к синему. Например, знакомая нам всем 100 Ваттная лампа накаливания имеет цветность 2800 К.

Измеряется цветопередача в Кельвинах (К).

Оттенок, для большинства видов ламп освещения, может быть теплого или холодного света, задает общую тональность светового потока.

Таблица №8. Цветопередача некоторых источников света.

Теперь, поговорим о таких понятиях как световой поток и световая отдача.

Световой поток – количество света, излучаемое лампой.

Световая отдача – отношение светового потока к мощности (люмен на ватт, лм/Вт), показатель эффективности осветительной способности лампы, а также ее экономичности.

Ниже приведены шесть таблиц (таблицы №9-14) световой отдачи наиболее распространенных источников света.

Таблица №9. Лапа накаливания, с прозрачным стеклом (2750 К, теплый свет)

Срок службы 1000 часов. Класс энергоэффективности Е.

Таблица №10. Лапа накаливания, с матовым стеклом (2700 К, теплый свет)

Срок службы 1000 часов. Класс энергоэффективности Е.

Таблица №11. Галогенная лампа (3000 К, теплый свет)

Срок службы 2000 часов. Класс энергоэффективности В.

Таблица №12. Компактная люминесцентная лампа (КЛЛ), 2700 К - теплого света

Срок службы от 8 000 до 10 000 часов. Класс энергоэффективности А.

Таблица №13. Светодиодная лампа, 3000 К - теплого света

Срок службы 30 000 – 40 000 часов. Класс энергоэффективности А.

Таблица №14. Светодиодная лампа, 4500 К - белого света

Срок службы 30 000 – 40 000 часов. Класс энергоэффективности А.

Возвращаемся к нашему примеру.

По выполненным выше результатам расчета освещенности Фл = 1246 Лм, то есть каждая лампа нашего светильника должна быть мощностью 1246 Лм.

Теперь выполним подбор ламп:

  1. Первым пунктом стоит определить какие лампы могут дать световой поток максимально приближенный к расчетному 1246 Люмен. Для этого воспользуемся таблицами №9-14.

Смотрим:

  •  таблица №9 – лампа накаливания с прозрачным стеклом, теплого света 2700 К, мощностью 95 Вт – 1300 Лм

  • таблица №10 – лампа накаливания с матовым стеклом, теплого света 2700 К, мощностью 95 Вт – 1290 Лм

  • таблица №11 галогенная лампа, теплого света 3000 К, мощностью 75 Вт – 1125 Лм

  • таблица №12 компактная люминесцентная лампа (КЛЛ), 2700 К - теплого света мощностью 20 Вт – 1170 Лм,

  • таблица №13 светодиодная лампа, 3000 К - теплого света мощностью 12 Вт – 1170 Лм,

  • таблица №14 светодиодная лампа, 4500 К - белого света – значение соответствующее расчетному отсутствует.
  1. Следующим пунктом смотрим конструктивные ограничения светильника, в нашем случае люстры. Как правило это наклейка, на которой заводом изготовителем отображена техническая информация устройства. Ниже приведен пример:

  • марка (YMP9439)
  • напряжение и частота (2230V – 50Hz)
  • цоколь и максимальная мощность лампы (Е27, Max. 60W)
  • производитель (Made in P.R.C.)

Нас интересует третий пункт, с цоколем все понятно, а вот максимальная мощность лампы (Max. 60W) является существенным ограничением по использованию в светильнике ламп освещения. Допустим, что люстра в нашем примере имеет аналогичные изображенной на картинке выше характеристики.

Максимальная мощность как правило указывается в эквиваленте ламп накаливания, то есть максимальная лампа накаливания которую можно использовать в патроне данного светильника 60 Вт. Обусловлено это тем, что большинство патронов современных светильников изготавливаются из различного рода пластмассовых композиций, которые ограничены по температуре нагрева.

Лампы накаливания и галогенные лампы преобразуют электрическую энергию не только в видимый световой поток (около 60 %), но еще и в тепловую энергию (порядка 40%), поэтому в нормальном эксплуатационном режиме происходит достаточно сильный нагрев стеклянного корпуса и металлического цоколя лампы. На практике максимально разрешенная лампа под воздействием тепла издает неприятный запах горелой пластмассы, поэтому не желательно использовать максимальный номинал.

Исходя из конструктивных характеристик нашей люстры делаем выбор из ламп не подверженные сильному нагреву:

  • светодиодные лампы, холодного и теплого света (вариант подороже)
  • компактные люминесцентные лампы холодного и теплого света (более дешевый вариант)

Для нашего примера мы выбрали светодиодные лампы, теплого света (3000 К), характеристики данных ламп приведены в таблице №13. Максимально близкими к расчетному значению (1246 Лм) будет лампа мощностью 12 Вт – 1170 Лм.

Итог: Согласно расчетам, чтобы выполнить освещение комнаты площадью 19,25 метров пяти рожковой люстрой нам потребуется 5 светодиодных ламп мощностью 12 Вт, световым потоком 1170 Лм.

Суммарная потребляемая мощность люстры составит 12 * 5 = 60 Вт.

Суммарный световой поток 1170 * 5 = 5850 Лм.

elektrika-svoimi-rykami.com

Расчет освещенности помещений врукопашную

Постараюсь очень кратко и просто изложить метод ручного расчета освещения в помещениях, которому меня научили на курсе «Расчет освещения» школы светодизайна LiDS.

Какой должна быть освещенность

При планировании освещения, в первую очередь нужно определить соответствующую нормам целевую освещенность и посчитать общий световой поток, который должны давать светильники в помещении.

С нормативами определиться просто – либо ищем свой тип помещения в таблицах СанПиН 2.21/2.1.1/1278-03 «Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий» и СП 52.13330.2011 «Естественное и искусственное освещение», либо соглашаемся с основным требованием по освещенности жилых помещений – 150лк или офисных помещений с компьютерами – 400лк.

Грубая оценка необходимого светового потока По умолчанию расчет освещенности делается в программе Dialux. Но результат хотя бы приблизительно нужно знать заранее, чтобы сверить данные с оценкой «на глазок». Как написано даже в Википедии, средняя освещенность поверхности — это отношение падающего на нее светового потока к площади. Но в реальном помещении часть светового потока светильника рабочих плоскостей не достигает, пропадая на стенах. Освещенность в помещении – это отношение общего светового потока светильников к площади помещения с поправочным коэффициентом «η».

Долю света «η», который доходит до рабочих поверхностей, можно оценить на глазок. В самом общем приближении для некоего очень среднего помещения с какими-то там светильниками до рабочих поверхностей доходит примерно половина света, а значит для очень грубой оценки можно использовать коэффициент η = 0,5.

Например, в комнате площадью 20м2 светильник со световым потоком 700лм (эквивалент лампы накаливания 60Вт) создаст освещенность Е = 0,5 × 700лм / 20м2 = 18лк. А это значит, что для достижения норматива в 150лк, нужно F = 700лм × (150лк / 18лк) =5800лм, или эквивалент 8-ми лампочек накаливания по 60Вт!

(Полкиловатта ламп накаливания на небольшую комнату! Понятно, почему нормы освещенности для жилых помещений гораздо ниже, чем для учреждений, и почему учреждения уже давно никто лампами накаливания не освещает.)

Более точный метод ручного расчета

Но так как помещения бывают с разными стенами, разной формы, с высокими или низкими потолками, поправочный коэффициент не обязательно равен 0,5 и для каждого случая свой: на практике, от 0,1 до 0,9. При том, что разница между η = 0,3 и η = 0,6 уже означает разбег результатов в два раза.

Точное значение η нужно брать из таблиц коэффициента использования светового потока, разработанных еще в СССР. В полном виде с пояснениями таблицы привожу в отдельном документе. Здесь же воспользуемся выдержкой из таблиц для самого популярного случая. Для стандартного светлого помещения с коэффициентами отражения потолка стен и пола в 70%, 50%, 30%. И для смонтированных на потолок светильников, которые светят под себя и немного вбок (то есть имеют стандартную, так называемую, «косинусную» кривую силы света).

Табл. 1 Коэффициенты использования светового потока для потолочных светильников с косинусной диаграммой в комнате с коэффициентами отражения потолка, стен и пола – 70%, 50% и 30% соответственно. В левой колонке таблицы указан индекс помещения, который считается по формуле:

, где S — площадь помещения в м2, A и B — длина и ширина помещения, h — расстояние между светильником и горизонтальной поверхностью, на которой рассчитываем освещенность. Если нас интересует средняя освещенность рабочих поверхностей (стола) в комнате площадью 20м2 со стенами 4м и 5м, и высоте подвеса светильника над столами 2м, индекс помещения будет равен i = 20м2 / ( ( 4м + 5м ) × 2,0м ) = 1,1. Удостоверившись, что помещение и лампы соответствуют указанным в подписи к таблице, получаем коэффициент использования светового потока – 46%. Множитель η = 0,46 очень близок к предположенному навскидку η = 0,5. Средняя освещенность рабочих поверхностей при общем световом потоке 700лм составит 16лк, а для достижения целевых 150лк, потребуется F = 700лм × ( 150лк / 16лк ) = 6500лм. Но если бы потолки в комнате были выше на полметра, а комната была не «светлым», а «стандартным» помещением с коэффициентами отражения потолка, стен и пола 50%, 30% и 10%, коэффициент использования светового потока η составил бы (см. расширенную версию таблицы) η = 0,23, и освещенность была бы ровно вдвое меньше!

Проверяем расчеты в диалюксе

Построим в диалюксе комнату 4 × 5м, высотой 2,8м, с высотой рабочих поверхностей 0,8м и теми же коэффициентами отражения, что и при ручном счете. И повесим 9шт мелких светильников с классической косинусной диаграммой по 720лм каждый (6480лм на круг).

Рис. 1 Взятый для примера светильник Philips BWG201 со световым потоком 720лм, и его классическое «косинусное» светораспределение Получится ли у нас средняя освещенность рабочих поверхностей в 150лк, как мы оценили вручную? Да, результат расчета в Dialux – 143лк (см. рис2), а в пустой комнате без мебели и человеческой фигуры – 149лк. В светотехнике же значения, различающиеся менее чем на 10% считаются совпадающими.

Рис. 2 Результат расчета в диалюксе – средняя освещенность рабочей поверхности (при коэффициенте запаса 1,0) составила 143лк, что соответствует целевому значению 150лк.

Рис. 3 Красивые картинки, в которые верят люди.

Заключение:

На грубую оценку примитивным методом по формуле E = 0.5 × F / S потребуется 1 минута времени, на уточнение коэффициента использования по таблицам – еще 3 минуты, на проект в диалюксе после некоторого обучения – около 20 минут и еще 20 минут, если хочется «навести красоту». Диалюкс выдает очень красивые картинки (см. рис. 3), которые стоят потраченного труда, потому что в них верят люди. Но по соотношению эффективности и трудозатрат оценка освещенности врукопашную вне конкуренции. Ручной счет прост, надежен и эффективен как саперная лопатка, дает уверенность и понимание. Теги:
  • светотехника
  • освещение
  • расчет освещенности

habr.com

Расчет освещенности помещения светодиодными лампами

Снижение цен на светодиодные лампы и рост тарифов на электроэнергию делает их установку в квартире привлекательнее с каждым днём. Кроме ощутимой экономии по затратам на электроэнергию, они позволяют создать освещение наиболее близкое по спектру к дневному свету.

Наиболее актуальный вопрос при замене обыкновенных лампочек накаливания на светодиодные – как рассчитать необходимое количество светодиодных ламп. Для нас привычно, что в туалете светит лампочка на 60 Вт, а в зале три-четыре по 100 Вт. Но для светодиодов такие параметры неприменимы. При установке необходимо производить определение суммарного светового потока.

Расчёт освещенности помещений различного назначения

Для каждой комнаты уровень освещённости подбирается индивидуально и зависит от того, какие работы будут проводиться в помещении. В тех комнатах, где вы будите читать либо писать яркость должна быть максимальная, а для коридора достаточен уровень освещенности почти на порядок ниже.

Наиболее простой способ подобрать замену нитям накаливания по таблице их световых потоков.

Возьмём в качестве примера гостиную комнату площадью 20 м.кв, в которой стоят четыре обыкновенных лампы накаливания по 100 Вт. Суммарный световой поток такой люстры составит 1200*4=4800 люмен. Делим световой поток на площадь помещения: 4800/20=220 люмен/м.кв (люкс).

Расчет освещения светодиодными светильниками

Здесь используются очень простые формулы:

Расчет количества светодиодных светильников по площади производим исходя из размеров комнаты и требуемого уровня освещения.

Световой поток одной лампы = уровень освещённости * площадь комнаты / количество ламп

Расчет светодиодного освещения на квадратный метр:

Уровень освещённости = количество ламп * световой поток лампы / площадь освещения

Сколько нужно светодиодных светильников на квадратный метр зависит от типа монтажа светильников. Если светодиоды устанавливаются в обычную люстру, их световой поток подбирается исходя из необходимого уровня интенсивности света. При монтаже точечных светильников по периметру – делим необходимый уровень на показатель светового потока ламп, которые мы планируем устанавливать.

Не следует забывать, что эффективный угол света светодиодов около 120 градусов, поэтому количество светильников на квадратный метр должно быть таким, что бы свет был равномерным, без перепадов. Это достигается увеличением количества источников света с пропорциональным уменьшением мощности каждого источника.

Следует учесть, что лампочки, расположенные в потолке, находятся на 20-30 см выше, чем в люстре, поэтому интенсивность света должна быть на 15-20% выше.

Онлайн калькулятор

Для определения количества источников света, можете использовать калькулятор расчета освещенности помещения светодиодными лампами:

Какие лампы выбрать для освещения

При выборе светодиодных лампочек следует обратить внимание на наиболее критические параметры, которые принципиальны для качества освещения.

  • Цветовая температура;
  • Тип рассеивателя;
  • Световой поток.

Цветовая температура

Цветовая температура светодиодов традиционно имеет три категории

  • WW— тёплый белый (цветовая температура 2500-3000 К);
  • W-белый (цветовая температура 3000-4200 К);
  • CW-холодный белый (цветовая температура выше 4500 К).

Визуально более высокая цветовая температура светят ярче. Так при одинаковой мощности визуальная яркость CW на четверть выше WW.

Тип рассеивателя

Рассеиватель может быть матовый либо прозрачный. Матовый рассеиватель обеспечивает более равномерное распределение светового потока, но потери интенсивности в нём могут достигать 25-30%. Для освещения относительно большой площади помещения более рационально использовать лампы с прозрачным рассеивателем, а вот в настольном светильнике однозначно матовый тип рассеивателя лучше.

Световой поток

При выборе лампочки обязательно обращайте внимание на её номинальный световой поток. Он зависит от типа и качества светодиодных матриц.

Требуемая мощность светодиодной лампы зависит от рассмотренных выше параметров. При использовании тёплого света, номинальная мощность должна быть на 25-30% выше чем ламп холодного света.

Неточности и погрешности при расчёте светодиодного освещения

Часто замену обыкновенных лампочек на светодиодные производят во время планового ремонта. После, в процессе эксплуатации, оказывается, что света недостаточно.

Основная причина таких казусов – отсутствие учета коэффициента отражения поверхностей.

Переклейка более тёмных обоев, использование линолеума либо ламината тёмных оттенков, матовый подвесной потолок способны ощутимо уменьшить освещённость в помещении. В данном случае мы говорим об общей освещённости. Интенсивность света на письменном столе, над которым смонтирован светодиодный светильник, может быть достаточной. А вот попытка чтения любимой книги, лёжа на диване, будет вызывать дискомфорт, если стены будут мало отражать свет от потолочных светильников.

Для определения коэффициента отражения принято учитывать такие коэффициенты:

  • 70% — белый цвет поверхности;
  • 50% — светлый;
  • 30% — серый;
  • 10% — темный;
  • 0% — черный;

Существует множество поправочных таблиц для определения освещённости поверхности при различных коэффициентах отражения. Ради лёгкости расчёта можно использовать упрощённую формулу.

Общий коэффициент отражения = (КО потолка + КО стен + КО пола) / 3

Так мы получаем усреднённые, которые позволят заложить поправочный коэффициент в наши расчёты.

Пример:

В комнате белый потолок (КО 70%), персиковые обои (КО 50%) и светлый ламинат (КО 50%).

Средний коэффициент отражения = (0,7+0,5+0,5)/3*1,2 = 0,7

Если в комнате установлены светодиодные лампы с номинальным световым потоком 1400 люмен, при расчете светильников на помещение берем 1400*0,7 = 1000 люмен.

Оцените, пожалуйста, статью. Мы старались:) (12 оценок, среднее: 4,58 из 5) Загрузка...

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

svetodiodinfo.ru


Смотрите также