Приточно вытяжные вентиляционные установки


Приточно-вытяжная установка: виды, сравнение, подбор и и правила эксплуатации

Естественная система циркуляции воздуха часто дает сбои – ее производительность зависит от природных факторов и использования герметичных стеклопакетов. Этих недостатков лишена принудительная вентиляция.

Для нормализации воздухообмена применяется приточно-вытяжная установка – практичное и эффективное решение. Многообразие климатического оборудования позволяет выбрать модель для конкретных условий эксплуатации. Однако определиться с подходящим устройством иногда проблематично, согласны?

Мы поможем вам решить этот вопрос. В статье представлена информация о принципах работы и особенностях эксплуатации разных видов приточно-вытяжных агрегатов. Чтобы облегчить выбор, мы обозначили главные характеристики и параметры устройств, которые обязательно следует учесть при покупке.

Составляющие элементы принудительной вентиляции

Приточно-вытяжной модуль – главный компонент вентиляционной системы с побуждением. Установка обеспечивает нормированную циркуляцию воздуха в замкнутом пространстве – подачу чистых потоков и вывод отработанных масс.

Вентиляционный модуль представляет комплекс оборудования, заключенного в единый корпус (моноблочный агрегат) или собранного из наборных элементов.

Схема устройства принудительной вентсистемы: 1 – приточно-вытяжной модуль (ПВУ), 2 – воздуховоды, воздухозаборные решетки, переходники, 3 – распределители воздушных струй, 4 – блок автоматики (+)

Конструкция приточно-вытяжного агрегата в обязательном порядке включает следующие элементы:

  1. Вентилятор. Базовый комплектующий для работы искусственной системы воздухообмена. В ПВУ с разветвленной сетью воздуховодов устанавливаются радиальные вентиляторы, поддерживающие высокий напор воздуха. В портативных ПВУ допустимо применение осевых моделей.
  2. Воздушный клапан. Устанавливается за наружной решеткой и предотвращает поступление воздуха извне при выключенной системе. При его отсутствии зимой в помещение будут просачиваться холодные потоки
  3. Магистраль воздуховодов. В системе задействованы две линии каналов: один – подача, а второй – выброс воздуха. Обе сети проходят через ПВУ. К первому воздуховоду подключается приточный вентилятор, ко второму, соответственно, вытяжной.
  4. Автоматика. Работа установки регулируется встроенной системой автоматики, реагирующей на показатели датчиков и заданные пользователем параметры.
  5. Фильтры. Для очистки поступающих масс применяется комплексная фильтрация. На входе приточного воздуховода размещается фильтр грубой чистки, его задача – удержание пуха, насекомых и частиц пыль.

Основное назначение первичной очистки – защита внутренних компонентов системы. Для более «тонкой» фильтрации перед воздухораспределителями устанавливаются фотокаталитический, угольный или другой тип барьера.

Устройство ПВУ на примере модели Вентс ВУТ с рекуперацией и нагревателем. В конструкции предусмотрен байпас для защиты теплообменника в зимнее время (+)

Некоторые комплексы оснащаются дополнительным функционалом: охлаждение, кондиционирование, увлажнение, многоступенчатая система очистки и ионизации воздуха.

Принцип работы приточно-вытяжного комплекса

Рабочий цикл ПВУ основывается на двухконтурной схеме транспортировки.

Весь процесс вентилирования можно разбить на несколько этапов:

  1. Забор воздухопотока с улицы, его очистка и подача к распределителям через воздуховод.
  2. Поступление загрязненных масс в вытяжной канал и их последующая транспортировка к выходной решетке.
  3. Выброс отработанных струй наружу.

Схема циркуляции может дополняться стадиями передачи тепловой энергии между двумя потоками, дополнительным нагревом входящего воздуха и т.д.

Работа ПВУ. Обозначения на рисунке: 1 – приточно-вытяжной модуль, 2 – подача свежего воздуха, 3 – забор «отработки», 4 – выброс использованных воздушных масс наружу (+)

Работа принудительной системы обеспечивает комплекс преимуществ по сравнению с естественным воздухообменом:

  • поддержание заданных показателей – датчики реагируют на смену в атмосфере и подстраивают режим работы ПВУ;
  • фильтрация входящего потока и возможность его обработки – нагрев, охлаждение, увлажнение;
  • экономия расходов на отопление – актуально для устройств с рекуперацией.

К недостаткам использования ПВУ относятся: дороговизна вентиляционного комплекса, сложность монтажа после окончания ремонтно-строительных работ и шумовой эффект. В моноблочных установках последний минус устранен благодаря использованию шумоизолированного корпуса.

Типы установок: особенности устройства и эксплуатации

Стоимость, производительность, энергопотребление зависят от функциональных возможностей ПВУ. Многообразие моделей условно делится на такие группы: установки с рекуперацией, агрегаты с подогревом и кондиционированием. Отдельная категория – «мобильные» аппараты.

Приточно-вытяжной модуль с рекуператором

Принудительная вентсистема кроме описанных выше достоинств имеет и значимый недостаток – существенное увеличение тепловых потерь. Вместе с отработанным воздухом «улетучивается» и выработанное отопительной системой тепло.

Издержки составляют порядка 60%. Решение проблемы – передача энергии от отводимого воздухопотока приточному.

Частичное возмещение тепла осуществляется в рекуператоре – модуль с теплообменником и вентилятором для продвижения разнонаправленных потоков. Обмен энергией происходит через стенки теплообменника – воздушные струи не смешиваются (+)

На сегодняшний день, большинство приточно-вытяжных установок изготавливаются с рекуператорами. Несмотря на дороговизну оборудования, целесообразность рекуперативной системы экономически обоснована.

Значения КПД «теплообменника»:

  • 30-60% – низкий уровень теплового возмещения;
  • 60-80% – хороший показатель эффективности;
  • свыше 80% – высококачественный теплообмен.

Интересно, что даже наличие рекуператора с КПД в 30% экономически выгодней ПВУ базовой комплектации без теплообменника. Средний срок окупаемости рекуперативной вентустановки – до 5-ти лет.

Эффективность ПВУ, схема движения воздухопотока, расход электроэнергии и цена модуля зависят от конструктива рекуператора.

Различают несколько видов теплообменников:

  • роторный;
  • пластинчатый;
  • тепловые трубки;
  • камерный модуль;
  • глеколевый агрегат.

Широкую распространенность получили первые две модели.

Роторный рекуператор

В корпусе ПВУ размещен цилиндрический вращающийся теплообменник с пластинами из гофрированного металла. По ходу работы отсеки попеременно заполняются разнонаправленными потоками воздуха.

Зона с «отработкой» нагревается, после прокрутки барабана тепло передается вновь поступающим холодным массам, собранным в смежном канале

Возмещение тепла составляет 60-90%.

Дополнительные преимущества:

  • частичный возврат влаги;
  • экономный расход электроэнергии.

Скорость вращения барабана можно регулировать, тем самым выбирая интенсивность воздухообмена и уровень КПД.

Аргументы против барабанной модификации:

  • подмес «отработки» к свежему потоку – 3-8%;
  • частичная передача запахов обратно в помещение;
  • акустический напор от вращающегося ротора;
  • необходимость регулярного обслуживания движущихся элементов;
  • большие габариты.

За счет сложности механизма ПВУ с роторным рекуператором стоят дороже пластинчатых модификаций.

Пластинчатый теплообменник

Воздуховоды «встречаются» в герметичном блоке с множеством каналов. Отсеки разделены теплопроводящими перегородками.

Образованные пути размещены в перекрестном направлении – в зоне турбулентности эффективность теплообмена возрастает. Происходит одновременное охлаждение/нагрев перегородок кассеты рекуператора с обеих сторон

Аргументы «за»:

  • подача чистого воздуха без примеси «отработки»;
  • доступная стоимость;
  • простота настройки и надежность модуля – нет подвижных элементов.

КПД пластинчатого преобразователя – до 70%. Главный минус – образование конденсата и появление наледи в вытяжном канале зимой. Работа в режиме «разморозки» (перенаправление теплого потока в обход кассеты) понижает КПД системы на 20%.

Сейчас на рынке представлено довольно много приточно-вытяжных вентиляционных систем с рекуперацией тепла от различных производителей. Обладая похожим набором характеристик, они отличаются по цене, качеству, площади обслуживания и множеству других критериев.

Так, рекомендуем присмотреться к приточно-вытяжной вентиляционной установке с пластинчатым рекуператором и интегрированной автоматикой от Naveka, которое за последнее время данное решение отлично себя зарекомендовало на рынке ввиду своей надежности и довольно тихой работе. Интегрированное управление с помощью дистанционного пульта, мониторинг на внешнем ЖК-дисплее, установка расписания работы и многое другое уже сразу встроено в этот агрегат.

Типовой “представитель” приточно-вытяжной установки с пластинчатым рекурператором – Naveka Node1 500AC. Модель-компакт, с толщиной панели 25мм, которая наполнена негорючей минеральной ватой. Одним из многочисленных достоинств данного решения является пульт управления с ЖК дисплеем, с помощью которого можно очень удобно управлять работой всей системы

Среди других брендов советуем обратить внимание на системы с рекуперацией от Mitsubishi, Maico и VENTO.

Энергосберегающие агрегаты с подогревом

Одной рекуперации зачастую недостаточно для полноценной компенсации температурной разницы встречных потоков. Эту функцию берет на себя встроенный калорифер. Кроме того, элемент защищает теплообменник от промерзания.

В ПВУ используются два вида нагревателей: водяные и электрические. Рассмотрим каждый подробнее.

Водяной подогрев

В корпусе принудительной вентустановки размещен радиатор с трубками, по которым циркулирует теплоноситель. Змеевик имеет оребрение для увеличения площади контакта с проходящими струями воздуха.

Пример устройства ПВУ с нагревателем (Vents ВУТ 1000 ВГ): 1 – водяной радиатор, 2 – рекуператор, 3 и 4 – вентиляторы подачи и вытяжки соответственно (+)

Жидкостный нагревательный элемент вступает в работу, если на выходе из рекуператора подаваемый воздух холоднее заданной температуры.

Электрический нагреватель

Установки с электрокалорифером способны прогревать подаваемый воздух до более высоких температур, чем «водяные» модификации.

Однако электрический нагреватель требовательней к условиям работы:

  • скорость воздухопотока – 2 м/с и более;
  • температура подаваемого воздуха в пределах 0-30°С, влажность – до 80%;
  • перед ТЭНом рекомендовано устанавливать дополнительный фильтр.

По сравнению с водным подогревом электрический модуль, в плане эксплуатации, дороже – возрастают платежи за электроэнергию.

Управление калорифером осуществляется от центрального блока управления. Обязательно наличие таймера работы и опции отключения прибора при перегреве (+)

Комплексы с кондиционированием

Отдельные модели совмещают в себе опции принудительной вентиляции и кондиционирования. Все элементы собраны в единый теплоизоляционный комплекс. Яркий пример многофункциональной техники – серия установок «Климат».

Конструкция климатического агрегата: 1 – фильтры, 2 – вентиляторы двусторонней направленности, 3 – компрессор фреоновой цепи, 4 – электронагреватель, 5 – водяной калорифер, 6 – теплообменники, 7 – автоматика, 8 – корпус (+)

В схеме присутствует реверсивный тепловой насос – заправленный герметичный фреоновый контур, соединенный с теплообменниками на вытяжном и приточном канале.

Работа ПВУ с кондиционированием происходит в двух режимах:

  1. Охлаждение. Теплообменник на приточном воздуховоде выступает испарителем и понижает температуру поступающего воздуха. В свою очередь теплообменник-конденсатор охлаждается прохладным воздухом, идущим с помещения.
  2. Нагрев. Рекуператор вытяжного воздуховода отдает тепло «отработки» свежим воздушным массам. На выходе из ПВУ перед подачей в дом возможен дополнительный нагрев воздуха.

Режим функционирования задается автоматически благодаря регуляторам и датчикам, считывающим параметры атмосферы.

Портативная безканальная установка

Интересное решение для замкнутых пространств – приточные мобильные вентиляционные установки с возможностью очистки, нагрева, охлаждения воздуха.

Отличительные особенности портативных модулей:

  • отсутствие громоздких воздуховодов;
  • установка внутри вентилируемого помещения;
  • компактные габариты и возможность монтажа в течение 2-3 часов;
  • многофункциональность: приток, обработка и вывод воздушных масс;
  • невысокий уровень шума – в пределах 35 дБ;
  • отсутствие сквозняков.

Для обустройства децентрализованной вентиляции необходим монтаж портативной ПВУ в каждом отдельном помещении.

Схема мобильной ПВУ: 1,3 – шумоглушитель, 2 – отсек рекуперации и вентиляции, 4 – электрический калорифер, 5 – угольный фильтр, 6 – фильтрующий элемент тонкой очистки, 7 – фильтр предварительной чистки, 8 – жалюзийный клапан, 9 – электрический привод (+)

Безканальные вентустановки используется преимущественно в общественных зданиях (лекционные, тренажерные, учебные залы и т.п.).

Рейтинг мобильного климатического оборудования приведен в этой статье.

Разновидности по способу монтажа

Возможны три варианта установки вентиляционного модуля:

  • напольный;
  • настенный;
  • «подшивной».

Напольный монтаж характерен для высокопроизводительных и громоздких вентагрегатов с расходом воздуха от 8000 куб.м/ч. Несмотря на наличие виброизоляции вентиляционных секций для установки объемных модулей требуется прочное основание.

Настенные модели отличаются небольшой производительностью – до 1500 куб.м/ч и компактными размерами. Монтаж осуществляется посредством анкерного крепления к стене, подсоединение воздуховодов сверху. Агрегат может размещаться в техническом помещении (балкон, санузел, гардеробная).

Модули подшивного или подвесного крепления – наиболее популярны. Как правило, техника имеет канальное исполнение и предназначена для монтажа под потолком

Основное преимущество подвесных моделей – скрытый монтаж. Однако для установки агрегата в эксплуатируемом помещении придется частично «задействовать» высоту потолков.

Основные параметры выбора вентустановки

Обустройство и монтаж систем вентиляции требует капитальных инвестиций и немалых трудозатрат. Поэтому подход к выбору «сердца» вентсистемы базируется на точных расчетах и анализе ряда параметров.

Оценка и расчет технических характеристик

Прежде всего, следует определиться с подходящими значениями производительности и статического давления.

Производительность

Расчет установки основывается на нормах воздухообмена по СНиП, назначении помещения, площади обслуживания и количестве проживающих.

Необходимо выполнить два вычисления (по количеству людей и кратности воздухообмена), сравнить показатели и выбрать наибольшее значение.

Нормы расхода воздуха из расчета на одного человека: типовой показатель – 60 куб.м/ч, в состоянии покоя – 30 куб.м/ч. Регламентированная кратность воздухообмена: 1-2 – для жилых зданий, 2-3 – офисы, торговые центры

Пример определения производительности (L) для дома на заданных условиях:

  • количество членов семьи – 3 человека;
  • площадь дома – 70 кв.м;
  • высота потолков – 3 м.

Формула 1. Расчет по числу проживающих:

L=N*norm,

где:

  • N – количество жильцов;
  • norm – расход воздуха (не меньше 40 куб.м/ч).

L=3*40=120 куб.м/ч.

Формула 2. Расчет по кратности воздухообмена:

L=S*H*n,

где:

  • S – площадь;
  • H – высота;
  • n – нормированный показатель воздухообмена.

L=70*3*1,5=315 куб.м/ч.

Вывод: для обеспечения достаточной циркуляции воздуха требуется установка производительностью не меньше 315 куб.м/ч.

Типовые показатели вентустановок:

  • 100-500 куб.м/ч – квартиры и отдельные помещения;
  • 500-2000 куб.м/ч – частные домовладения, коттеджи;
  • 1000-10000 куб.м/ч – производственные здания, цеха, офисы.
Статическое давление

Величина показывает давление, создаваемое вентилятором для оказания сопротивления на пути циркуляции воздуха. Точный расчет статического напора требует учета сопротивления всех элементов сети.

«Ручное» вычисление без соответствующего опыта выполнить сложно. Специалисты задействуют программный комплекс типа MagiCad.

Усредненные значения давления при скорости воздухопотока 3-4 м/с: квартиры 50-150 кв.м – 75-100 Па, коттеджи 150-350 кв.м – 100-150 Па

Приведенные данные актуальны именно для модульных вентустановок, а не наборных комплексов, где в учет надо брать понижение давления на воздушном клапане, калорифере, фильтре и прочих составляющих.

Кроме обозначенных параметров следует оценить:

  1. Энергоэффективность. Для каждой из возможных моделей надо рассчитать затраты на электричество на 1 год с учетом режима работы зимой и летом. Класс энергопотребления указывает соотношение затраченной энергии к объему произведенного тепла.
  2. КПД рекуператора. Следует сопоставить значения КПД в различных режимах работы ПВУ. Высокий показатель эффективности у теплообменников с двойной пластинчатой кассетой и промежуточной зоной – КПД достигает 70-90%.
  3. Мощность нагревателя. Типовой показатель для бытовых вентустановок – 3-5 кВт.

Лучше отдавать предпочтение моделям с возможностью автоматического понижения скорости вентилятора для корректировки нагрузки на сеть.

Уровень шума и степень фильтрации

Акустическая мощность показывает насколько «громкой» будет работа собранной установки.

Звуковой эффект определяют две величины:

  • LwA – степень акустической мощности;
  • LpA – уровень звукового давления.

Давать оценку реальной «шумности» следует по первому показателю. Разные производители могут измерять акустическую мощность по различным методикам, поэтому одни и те же значения иногда имеют отличительный результат на практике.

Действенный метод оценить «звучание» установки – тестирование технике в демонстрационном зале. Допустимое значение шума в жилом помещении – 25-45 дБ

Качество поступающего воздуха зависит используемой системы очистки.

Возможные ступени фильтрации:

  • барьер от крупной уличной пыли, шерсти и пуха – грубая очистка фильтрами G4, G3 с эффективностью 90%;
  • защита от мелкой пыли в 1 мкм – класс фильтрации F7-F9;
  • абсолютная чистка, обеспечивающая барьер от частиц 0,3 мкм – HEPA-фильтры (h20-h24), эффективность – 99,5%.

Для жилых домов достаточно первых двух ступеней чистки. Высокоэффективная фильтрация применяется в медучреждениях, помещениях для производства лекарственных препаратов, продуктов питания, электроники.

Удобство эксплуатации: необходимый функционал

Бытовые ПВУ оснащаются встроенной системой автоматики, пультом управления, ЖК-дисплеем с выводом всех параметров воздухообмена. Кроме базовых опций (регулировка скорости вентилятора, температуры) приветствуется наличие практичных функций.

Таймер. Сценарное управление позволит оптимизировать режим работы на определенное время суток или день недели.

Для точной регулировки желательно выбирать устройства с вентилятором на 5 и более скоростей, а также с часами реального времени без сброса при отключении питания

Рестарт. Возможность автоматического включения и сохранения заданных параметров в случае сбоя электропитания.

Индикатор загрязненности фильтра. Удобная опция – оповещение о замене фильтрующего элемента. Высокотехнологичные модели оборудуются датчиками изменения давления на входе воздушного фильтра – при загрязнении перепад давления повышается.

Самодиагностика. Любая техника со временем выходит из строя. Полезно, если автоматика «оповещает» о возникшей неисправности – это поможет своевременно установить и устранить проблему.

Выводы и полезное видео по теме

Энергосберегающая вентсистема с рекупераций подвесного типа Daikin VAM/800FB:

Устройство, особенности и технология монтажа портативного приточно-вытяжного модуля Vents Micro 60/А3:

ПВУ 400 от Ventrum c электрическим нагревателем и роторным рекуператором:

Обустройство вентиляции с помощью приточно-вытяжного модуля используется в разных по назначению и метражу помещениях.

Обеспечение качественного воздухообмена зависит от грамотного расчета и выбора климатического оборудования. Если есть сомнения в собственных силах, то для определения параметров и разработки проекта лучше обратиться к профессионалам.

Есть, что дополнить, или возникли вопросы по выбору приточно-вытяжной установки? Можете оставлять комментарии к публикации и участвовать в обсуждении материала – форма для связи находится в нижнем блоке.

sovet-ingenera.com

Приточно-вытяжная вентиляция: принцип работы и сооружения

В помещении, наполненном свежим воздухом, легче дышится, продуктивнее работается и крепче спится. Но открывать окно для проветривания каждые 2-3 часа проблематично, вы согласны? Особенно, в ночное время, когда все члены семьи сладко спят.

Одним из автоматизированных решений для этой задачи является приточно-вытяжная вентиляция (ПВВ) помещения. Но как правильно ее сделать? Мы поможем вам изучить принцип работы и разобраться с особенностями обустройства.

В нашей статье рассмотрены составные элементы приточно-вытяжной системы, правила их расчета и нормативы воздухообмена в  помещениях различного типа.

Подобраны схемы обустройства вентиляции, фото с изображением отдельных элементов системы, приведены полезные видеорекомендации по устройству вентсистемы в частном доме своими руками.

Что такое вентиляция?

Как часто мы проветриваем комнату? Ответ должен быть максимально честным: 1–2 раза в день, если не забыли открыть окно. А ночью сколько раз? Риторический вопрос.

Согласно санитарно-гигиеническим нормам общая масса воздуха в комнате, где постоянно находятся люди, должна полностью обновляться каждые 2 часа.

Под обычной вентиляцией понимают процесс обмена воздушных масс между замкнутым пространством и окружающей средой. Этот молекулярно-кинетический процесс предоставляет возможность удаления излишков теплоты и влаги с помощью фильтрационной системы.

Вентиляция также обеспечивает соответствие воздуха в помещении санитарно-гигиеническим требованиям, что накладывает собственные технологические ограничения на оборудование, которое будет генерировать этот процесс.

Приточно-вытяжная вентиляцтонная система предназначена для реализации воздухообменных мероприятий, результат которых обеспечивает санитарно-гигиенические нормы в помещении Действия, обеспечивающие как приток свежего воздушного потока, так и отвод отработанной воздушной массы, нужны преимущественно там, где требуется интенсивный воздухообмен В системах приточно-вытяжного типа совмещены устройства, стимулирующие или отвод воздуха, или его приток, или нагнетающие и отсасывающие воздух одновременно Все приточно-вытяжные вентиляционные конструкции относятся к механической категории, нуждающейся в установке технических устройств и использовании электроэнергии Вентиляционные системы приточно-вытяжного типа могут осуществлять фильтрацию, орошение, подогрев или охлаждение воздуха. Но гораздо лучше с обработкой воздушного потока справляются кондиционеры, которые нередко применяются в качестве дополнительного климатического оборудования Воздуховоды и оборудование вентиляционных систем только в производственных зданиях прокладываются открытым способом. В коммерческих и жилых помещениях их скрывают на чердаках или за подвесными потолками, исключение - стиль лофт Традиционно сборку воздуховодов производили из элементов, в изготовлении которых использовалась оцинкованная сталь. Жесть по сей день применяется на предприятиях и в зданиях, предназначенных для общественного посещения Вентиляционные каналы в частных кухнях, загородных домах и в помещениях предприятий, не требующих устройства мощных систем, сооружаются из жестких, пластичных и гофрированных полимерных труб Каналы приточно-вытяжной вентиляцииУстройство притока и вытяжкиПриточно-вытяжные схемы в производственных помещенияхСмонтированные вентканалы под потолкомРабота вентиляции в тандеме с кондиционерамиМесто расположения вентиляционных системСборка вентиляционных каналов из жестиПолимерные вентиляционные каналы и гофра

Вентиляционная подсистема – совокупность технологических устройств и механизмов для забора, отвода, перемещения и очистки воздуха. Она является частью комплексной системы коммуникаций помещений и зданий.

Рекомендуем не сопоставлять понятия вентиляции и кондиционирование – очень схожие категории, которые имеют ряд отличий.

  1. Основная идея. Кондиционирование обеспечивает поддержку определённых параметров воздуха в замкнутом пространстве, а именно температуру, влажность, степень ионизации частиц и тому подобное. Вентиляция же производит управляемую замену всего объёма воздуха через приток и отвод.
  2. Главная особенность. Система кондиционирования работает с воздухом, который находится в помещении и сам приток свежего воздуха может вообще отсутствовать. Система вентилирования всегда работает на границе замкнутого пространства и окружающей среды посредством обмена.
  3. Средства и методы. В отличие от вентиляции в упрощённом виде кондиционирование являет собой модульную схему из нескольких блоков, которая обрабатывает небольшую часть воздуха и таким образом поддерживает санитарно-гигиенические параметры воздуха в указанном диапазоне.

Система вентиляции в доме может быть расширена до любого необходимого масштаба и обеспечивает, в случае аварийной ситуации в помещении, довольно быструю замену всего объёма воздушной массы. Что происходит с помощью мощных вентиляторов, нагревателей, фильтров и разветвлённой системы трубопроводов.

Вам может быть интересна информация от обустройстве вентиляционного трубопровода из пластиковых воздуховодов, рассмотренная в другой нашей статье.

Кроме основной функции, вентиляционные системы могут являться частью интерьера в промышленном стиле, который применяется для офисных и торговых помещений, развлекательных заведений

Выделяют несколько классов вентиляции, которые можно разделить относительно способа генерации давления, распространения, архитектуры и назначения.

Искусственное нагнетание воздуха в системе производится с помощью нагнетательных установок — вентиляторов, воздуходувок. Увеличив давление в системе трубопроводов, можно перемещать газовоздушную смесь на большие расстояния и в значительном объёме.

Это характерно для промышленных объектов, производственных помещений и общественных объектов с центральной системой вентилирования.

Генерация давления воздуха в системе может быть нескольких типов: искусственная, естественная или комбинированная. Часто применяется комбинированный метод

Рассматривают системы вентиляции местные (локальные) и центральные. Локальные системы вентиляции — “точечные” узконаправленные решения для конкретных помещений, где необходимо строгое соответствие стандартам.

Центральное вентилирование предоставляет возможность создать регулярный обмен воздуха для значительного количества одинаковых по назначению помещений.

И последний класс систем: приточные, вытяжные и комбинированные. Приточно-вытяжные системы вентиляции обеспечивают одновременный приток и вытяжку воздуха в пространстве. Это наиболее распространённая подгруппа систем вентилирования.

Такие конструкции обеспечивают лёгкое масштабирование и обслуживание для самых разнообразных помещений промышленного, офисного и жилого типа.

Физическая основа вентсистемы

Приточно-вытяжная вентиляционная система являет собой многофункциональный комплекс сверхбыстрой обработки газовоздушной смеси. Хоть это и система принудительной транспортировки газа, но в её основе лежат вполне объяснимые физические процессы.

Для создания эффекта от естественной конвекции воздушных потоков, источники тепла размещают максимально низко, а приточные элементы в потолке или под ним

Само слово “вентиляция” тесно связано с понятием конвекции. Она является одним из ключевых элементов при перемещении воздушных масс.

Конвекция — явление циркуляции тепловой энергией между холодными и теплыми потоками газа. Существует естественная и принудительная конвекция.

Немного школьной физики для понимания сути происходящего. Температура в комнате определяется температурой воздуха. Переносчиками тепловой энергии являются молекулы.

Воздух — многомолекулярная газовая смесь, которая состоит из азота (78%), кислорода (21%) и остальных примесей (1%).

Находясь в замкнутом пространстве (помещении), имеем неоднородность температуры относительно высоты. Это связано с неоднородность концентрации молекул.

Учитывая равномерность давления газа в замкнутом пространстве (помещении), согласно основного уравнения молекулярно-кинетической теории: давление пропорционально произведению концентрации молекул на их среднюю температуру.

Если давление везде одинаково, тогда произведение концентрации молекул на температуру в верхней части комнаты будет эквивалентна такому же произведению концентрации на температуру:

p=nkT, nверх*Tверх=nниз*Tниз, nверх/nниз=Tниз/Tверх

Чем ниже температура, тем больше концентрация молекул, а значит и больше общая масса газа. Поэтому говорят, что тёплый воздух “легче”, а холодный — “тяжелее”.

Правильная вентиляция в совокупности с эффектом конвекции способны поддерживать в помещении установленный температурный режим и влажность в периоды автоматического отключения основного обогрева

В связи с вышеизложенным становится ясен основной принцип обустройства вентиляции: подача (приток) воздуха обычно оборудуется снизу помещения, а отвод (вытяжка) — сверху. Это аксиома, которую требуется учитывать во время проектирования системы вентиляции.

Особенности приточно-вытяжной вентиляции

Приточно-вытяжная вентиляция взаимодействует с двумя разными по составу и назначению потоками воздуха, которые впоследствии обрабатываются.

В ПВВ всё необходимое оборудование и дополнительные системы размещены в едином каркасе, который можно устанавливать внутри лоджии, на чердаке, на стене снаружи дома и т.д.

Специальная конструкция установки предоставляет широкие возможности по обеспечению вентилирования практических любого количества комнат в здании.

Кроме основной функции перемещения воздуха, приточно-вытяжная вентиляция включает в себя следующий арсенал вспомогательных подсистем и дополнительных функций.

Среди которых следующие:

  • охлаждение и подогрев воздуха;
  • ионизация и увлажнение частиц;
  • обеззараживание и фильтрация воздуха.

Рассмотрим типичный рабочий цикл приточно-вытяжной системы вентилирования, которая базируется на двухконтурной модели транспортировки.

На первом этапе происходит забор холодного воздуха от окружающей среды и вытяжка тёплого воздуха из помещения. С обеих сторон воздух проходит систему очистки.

После холодный воздух передаётся в калорифер (нагреватель) — характерно для ПВВ с рекуперацией тепла. Кроме того, тепло холодному газу передаётся от вытяжного тёплого воздуха — характерно для обычных систем.

После нагревания и обмена теплом вытяжной отработанный воздух отводится через внешний канал, а нагретый свежий воздух подаётся в помещение.

Популярная компоновка вентиляционного модуля включает теплообменную камеру (рекуператор), в которой происходит обмен тепловой энергии между встречными потоками воздуха. В любом случае каждый поток проходит через двойную систему фильтрации

Главными принципами работы приточно-вытяжной вентиляции являются эффективность и экономия.

Классическая схема приточно-вытяжной вентиляции имеет следующие преимущества:

  • высокая степень очистки входного потока
  • доступная эксплуатация и обслуживание съёмных элементов
  • целостность и модульность конструкции.

Для расширения функционала приточно-вытяжные установки оснащают вспомогательными блоками управления и контроля, фильтр-системами, датчиками, автотаймерами, шумоглушителями, сигнализаторами перегрузки электродвигателей, рекуперативными блоками, поддонами для конденсата и т. п.

Динамические параметры вентиляции

С проектированием системы вентиляции связано достаточно много вопросов, поскольку в случае ошибочного расчёта характеристик из вполне экономичного вентиляционного комплекса можно получить расточительного “монстра” энергоресурсов.

Что напрямую влияет на финансовые затраты его обслуживания. В результате сама идея экономичной эксплуатации оборудование не рассматривается.

Основная нагрузка вентиляционной системы приходится на вентилятор. Производительность вентилятора зависит от формы импеллера (колеса с лопастями), качества материалов и сборки оборудования

Дабы корректно спроектировать приточно-вытяжную вентиляцию рекомендуется произвести алгебраические расчёты производительности установки и динамические параметры воздушных потоков.

Есть несколько разнообразных методик и алгоритмов вычислений, но нашему вниманию будет представлен один из самых простых и надёжных вариантов.

Всё что связано со второстепенными процессами увлажнения, дополнительной ионизации и вторичной очистки на данном этапе можно не учитывать.

Нормативы по обустройству

Приводить полный перечень санитарных норм и правил (СНиП), которые выдвигаются к различным системам вентилирования нерационально, поскольку материала хватит на пару книг, но знать опорные константы для жилых и офисных помещений необходимо.

Что касается офисных помещений, при построении системы вентиляции основное внимание обращается на те помещения, где будет находится персонал офиса.

Далее все нормативы указываются в расчёте на одного человека. В классическом офисном здании на одном этаже располагается полноценный набор разнообразных по назначению помещений.

Например, в кабинете за один час должна происходить замена 60 кубов воздуха, в операционных залах — 30-40 м3, в санузле — 70 м3, в курилке — более 100 м3, в коридорах и вестибюлях — 10 м3.

Согласно общих санитарных норм для жилых помещений, в один час происходит полный обмен воздушной массы в количестве 30 м3 в расчёте на одного человека — расчёт по количеству жильцов.

Существует ещё один подход в расчёте объёма воздуха — по площади. На каждый квадратный метр жилого пространства приходится 3 м3.

Отдельно стоит упомянуть о вентиляции промышленных объектов и складских ангаров — 20 м3 на единицу площади. В таких огромных помещениях системы вентиляции строятся на основе многокомпонентной системы парных вентиляторов (4, 8, 16 и более шт в каркасе)

Для остальных подсобных помещений имеются готовые нормативные параметры. Так, кухня с электроплитой — более 60 м3, с газовой плитой — более 80 м3, ванная — не менее 25 м3 и т. д.

Кроме того, необходимо помнить, что для жилых комнат скорость воздушных потоков составляет не более 2 м/с, а для кухни и санузла скорость должна быть в 4-6 м/с.

Формулы и пояснения к ним

Переходим непосредственно к характеристикам и формулам. Вычисления происходят в несколько этапов, на каждом из которых мы высчитываем одну из характеристик системы вентиляции.

Рабочий объём воздуха

Рассмотрим вычисление рабочего объёма воздуха (м3/ч).

Для офиса рекомендуем делать расчёт по количеству людей:

V=35*N,

Где N — количество человек одновременно находящихся в помещении.

Для квартир и частных домов необходимо производить просчёт относительно объёма жилого пространства:

V=2*S*H,

Где: 2 — коэффициент кратности обмена воздуха в единицу времени (за 1 час); S — жилая площадь; H — высота помещений.

Расчет сечения воздуховода

Сечение воздуховода для вентиляции рассчитывается в см2. Магистральные воздуховоды бывают двух типов в сечении: круглые и прямоугольные.

Площадь сечения трубы рассчитывается по соотношению:

Sсечен=V*2,8/ω,

Где: Sсечен — площадь сечения; V — объём воздуха (м3/ч); 2,8 — коэффициент согласования размерностей; ω — скорость потока в магистрали (м/с).

Скорость потока воздуха, проходимого по магистрали, обычно эквивалентна 2-3 м/с.

Высчитав площадь сечения воздуховода можно определить диаметр для круглого или ширину/высоту для прямоугольного воздуховода. Зная ширину можем найти высоту сечения и наоборот. Диаметр круглого сечения будет равен √4*Sсечен/pi
Количество и размер диффузоров

Рассмотрим далее как вычислить количество и размер диффузоров. Габариты распылителя обычно выбирают в 1.5-2 раза больше от площади сечения основной магистрали.

С количеством диффузоров немного сложнее, их вычисляют по формуле:

N=V/(2820*ω*d2),

Где: N – искомое количество диффузоров; V – расход воздушной массы (м3/ч); ω – скорость потока воздуха (м/с); d – диаметр диффузора (м), если он круглый.

Если диффузор прямоугольного сечения, тогда:

N=π*V/(2820*ω*4*a*b),

Где: π — число Пи, a и b — габариты сечения.

Параметры производительности установки

Известны две наиболее важные характеристики вентиляционного блока — мощность и степень генерируемого давления. Мощность вентиляционной станции высчитывается так:

P=ΔT*V*Cv/1000,

Где: ΔT — дельта температур воздуха на входе/выходе (°С); V — расход воздушной массы (м3/ч); Cv — теплоёмкость воздуха (0,336 Вт*ч/м³*°С).

Генерируемое давление определяется по характеристической кривой производительности главного вентилятора.

Этот параметр должен быть эквивалентен аэродинамическому сопротивлению воздушной сети. Производители вентиляторов предоставляют график кривой в техническом паспорте на изделие.

Кроме того, немаловажно иметь общее представление о нагревателе входного потока воздуха — калорифере. Это обособленная часть вентиляционной системы, где происходит нагревание воздуха. Проходя, например, через тепловой радиатор, воздух тем самым нагревается.

Калорифер, в котором нагревание происходит через радиатор и обмен тепловой энергией с вытяжным потоком называют рекуператором. Существуют одно и многосекционные рекуператоры, которые позволяют смешивать воздушные потоки с большой разницей их входных температур

В заключение стоит упомянуть о напряжении сети питания для вентиляционного блока. Рекомендуется использовать сеть напряжения 380 В, она обеспечит надёжную эксплуатацию установки любой мощности.

Специфика установки механической вентиляции

С монтажом вентиляционной установки приточного типа домашний мастер, вне сомнений смог бы справиться без привлечения рабочих.

Однако стоит помнить, что работы проводятся на опасной для неопытного исполнителя высоте. Потому лучше привлечь тех, кто имеет опыт, инструменты и страховочные приспособления для выполнения следующих этапов:

Этап 1: Буровым станком алмазного бурения, предназначенным для формирования отверстий в бетоне, каменной кладке, кирпиче, выбуривают отверстие диаметром, равным сечению воздуховода Этап 2: Пробуренное отверстие очищают от пыли и мелких частиц пробуренной конструкции, затем в него заводят воздуховод Этап 3: Корпус установки отделяют от системного блока для облегчения проведения работ Этап 4: Системный блок временно удаляют в сторону, корпус проверяют на прочность соединений, чтобы их не пришлось корректировать на высоте Этап 5: Страховочный канат, к которому будет крепиться корпус, заводят в воздуховод и перекидывают в окно Этап 7: Вторую часть страховочного корпуса, закрепленного на корпусе, проводят в воздуховод со стороны улицы Этап 7: Аккуратно придерживая и страхуя канатом, корпус соединяют с воздуховодом Этап 8: Осторожно развернув корпус и направив его к окну, заводят системный блок в корпус и защелкивают его Бурение отверстия в стене для ввода каналаУстановка воздуховода в отверстиеОтделение корпуса приточной установкиПодготовка корпуса к монтажным работамФиксация страховочного канатаКрепление троса для монтажа корпусаУстановка корпуса по месту расположенияПрисоединение системного блока

По завершению вовсе непростых манипуляций по монтажу непосредственно приточной установки останется только ее подключить к коммуникациям.

Рассмотрим подробнее этот процесс с помощью следующей фотоподборки.

Сведения о последовательности монтажа принудительных вентиляционных установок поможет избежать многих грубейших ошибок, допускаемых неопытными монтажниками.

Особенности построения естественной ПВВ

При разработке качественной естественной приточно-вытяжной вентиляции, большинство специалистов соблюдают некий “устав” проектно-монтажных работ.

Эти правила помогают создать действительно эффективные и экономичные решения даже для самых нестандартных расположений комнат и подсобных помещений в частном доме и многокомнатной квартире многоэтажки.

Во время проектирования вентиляции нужно постараться создать естественное течение воздуха от жилых комнат через коридоры к санузлу и кухне

Коридоры в этом случае выступают в роли проточных пространств. Поэтому главный вентиляционный блок системы нужно располагать по центру дома, в верхней части коридоров или подсобных помещений.

Например, вентиляционный модуль для 2-этажного частного дома можно расположить на первом этаже вверху подсобного помещения или основного коридора. Для 1-этажного дома, как вариант, в нижней части чердака.

Прокладывая магистральный трубопровод, нужно помнить что приточный воздух должен идти в жилые комнаты, а вытяжной — уходить через кухни и подсобные помещения.

Поэтому приточные диффузоры размещаются на условной границе “комната-среда”, а вытяжки на кухне, в ванной, подсобке, туалете.

Диффузор сочетает в себе две функции: равномерное распределение свежего и отвод уже использованного воздуха. Они бывают самой разной формы. Изготавливаются из тонколистового металла и пластика

Существуют замечания касательно высоты расположение входных и выходных воздушных проёмов. Выход вентиляционной системы размещают обязательно выше уровня крыши здания.

Это обезопасит ПВВ от вторичного забора только что выведенного воздуха через вытяжные отверстия.

Забор свежего воздуха необходимо производить на высоте не менее 2 метров от поверхности земли.

Потому что мелкие абразивные частички и пыль может подниматься с помощью ветровых потоков на высоту более 1 метра и залетать в приточные диффузоры, тем самым быстро засорять фильтры первичной очистки.

Выводы и полезное видео по теме

В ролике рассказывают и демонстрируют особенности проектирования и монтажа ПВВ в частном доме:

Ещё один наглядный пример готового решения для вентиляции частного 1-этажного деревянного дома:

Резюмируя вышеизложенную информацию, отметим что приточно-вытяжная вентиляция несложная для проектирования, доступная для приобретения и монтирования система.

Вентиляция в совокупности с системой отопления позволяет организовать баланс свежего и тёплого воздуха в помещении.

Вы занимались обустройством вентиляции на даче? Или знаете секреты проектирования и монтажа вентсистемы в квартире? Поделитесь, пожалуйста, своим опытом – оставляйте свои комментарии к этой статье.

sovet-ingenera.com

Приточно-вытяжная вентиляция с рекуперацией тепла: устройство и работа

Поступление свежего воздуха в холодный период времени приводит к необходимости его нагрева для обеспечения правильного микроклимата помещений. Для минимизации затрат электроэнергии может быть использована приточно-вытяжная вентиляция с рекуперацией тепла.

Понимание принципов ее работы позволит максимально эффективно уменьшить теплопотери с сохранением достаточного объема замещаемого воздуха. Давайте попробуем разобраться в этом вопросе.

Энергосбережение в системах вентиляции

В осенне-весенний период при вентиляции помещений серьезной проблемой является большая разность температур поступающего и находящегося внутри воздуха. Холодный поток устремляется вниз и создает неблагоприятный микроклимат в жилых домах, офисах и на производстве или недопустимый вертикальный градиент температуры в складе.

Распространенным решением проблемы является интеграция в приточную вентиляцию калорифера, с помощью которого происходит нагрев потока. Такая система требует затрат электроэнергии, в то время как значительный объем выходящего наружу теплого воздуха ведет к существенным потерям тепла.

Выход воздуха наружу с интенсивным паром служит индикатором существенных потерь тепла, которое можно использовать на обогрев входящего потока

Если каналы притока и отвода воздуха расположены рядом, то можно частично передать тепло выходящего потока входящему. Это позволит уменьшить потребление электроэнергии калорифером или вовсе отказаться от него. Устройство для обеспечения теплообмена между разнотемпературными потоками газов называется рекуператором.

В теплое время года, когда температура наружного воздуха значительно превышает комнатную, можно использовать рекуператор для охлаждения входящего потока.

Устройство блока с рекуператором

Внутреннее устройство систем приточно-вытяжной вентиляции с интегрированным рекуператором достаточно простое, поэтому возможна их самостоятельная поэлементная покупка и установка. В том случае если сборка или самостоятельный монтаж вызывает сложности можно приобрести готовые решения в виде типовых моноблочных или индивидуальных сборных конструкций под заказ.

Типовая схема устройства приточно-вытяжной вентиляционной системы с размещенным в едином корпусе рекуператором может быть дополнена другими узлами на усмотрение пользователя

Основные элементы и их параметры

Корпус с тепло- и шумоизоляцией выполняют как правило из листовой стали. В случае стенового монтажа он должен выдерживать давление, которое возникает при запенивании щелей вокруг блока, а также не допускать вибрацию от работы вентиляторов.

В случае распределенного забора и притока воздуха по различным помещениям к корпусу присоединяют систему воздуховодов. Ее оснащают клапанами и заслонками для распределения потоков.

При отсутствии воздуховодов на приточное отверстие со стороны помещения устанавливают решетку или диффузор для распределения потока воздуха. На приточное отверстие со стороны улицы монтируют воздухозаборную решетку наружного типа во избежание попадания в систему вентиляции птиц, крупных насекомых и сора.

Движение воздуха обеспечивают два вентилятора осевого или центробежного типов действия. При наличии рекуператора естественная циркуляция воздуха в достаточном объеме невозможна по причине создаваемого этим узлом аэродинамического сопротивления.

Наличие рекуператора предполагает установку фильтров мелкой очистки на входе обоих потоков. Это необходимо для уменьшения интенсивности засорения пылью и жировыми отложениями тонких каналов теплообменника. В противном случае для полноценного функционирования системы придется увеличить частоту проведения профилактических работ.

Фильтры мелкой очистки необходимо периодически менять или чистить. В противном случае возросшее сопротивление потоку воздуха станет причиной поломки вентиляторов

Один или несколько рекуператоров занимают основной объем приточно-вытяжного устройства. Их монтируют по центру конструкции.

В случае типичных для территории сильных морозов и недостаточного КПД рекуператора для нагрева наружного воздуха можно дополнительно установить калорифер. Также по необходимости монтируют увлажнитель, ионизатор и другие устройства для создания благоприятного микроклимата в помещении.

Современные модели предусматривают наличие электронного блока управления. Сложные модификации имеют функции программирования режимов работы в зависимости от физических параметров воздушной среды. Внешние панели имеют привлекательный вид, благодаря чему хорошо могут быть вписаны в любой интерьер помещения.

Решение проблемы возникновения конденсата

Охлаждение поступающего из помещения воздуха создает предпосылки для разгрузки влаги и образования конденсата. В случае высокой скорости потока большая его часть не успевает скапливаться в рекуператоре и выходит наружу. При медленном движении воздуха значительная часть воды остается внутри устройства. Поэтому необходимо обеспечить сбор влаги и вывод ее за пределы корпуса приточно-вытяжной системы.

Элементарным устройством для сбора и отвода конденсата является поддон, расположенный под рекуператором с уклоном в сторону сливного отверстия

Вывод влаги производят в закрытую емкость. Ее размещают только внутри помещения во избежание перемерзания каналов оттока при минусовых температурах. Алгоритма надежного расчета объема получаемой воды при использовании систем с рекуператором нет, поэтому его определяют экспериментальным путем.

Повторное использование конденсата для увлажнения воздуха нежелательно, так как вода впитывает многие загрязнители, такие как человеческий пот, запахи и т.д.

Значительно уменьшить объем конденсата и избежать связанных с его появлением проблем можно организовав отдельную вытяжную систему из ванной комнаты и кухни. Именно в этих помещениях воздух имеет наибольшую влажность. При наличии нескольких вытяжных систем воздухообмен между технической и жилой зоной необходимо ограничить с помощью установки обратных клапанов.

В случае охлаждения выходящего потока воздуха до отрицательных температур внутри рекуператора происходит переход конденсата в наледь, что вызывает сокращение живого сечения потока и, как следствие, – уменьшение объема или полное прекращения вентиляции.

Для периодического или разового размораживания рекуператора устанавливают байпас – обходной канал для движения приточного воздуха. При пропуске потока в обход устройства происходит прекращение теплоотдачи, нагрев теплообменника и переход наледи в жидкое состояние. Вода стекает в емкость сбора конденсата или происходит ее испарение наружу.

Принцип устройства байпаса несложен, поэтому при риске образования наледи целесообразно предусмотреть такое решение, так как отогрев рекуператора другими способами сложен и длителен

При прохождении потока через байпас отсутствует нагрев приточного воздуха посредством рекуператора. Поэтому при активации данного режима необходимо автоматическое включение калорифера.

Особенности различных типов рекуператоров

Существует несколько конструктивно различающихся вариантов реализации теплообмена между холодным и нагретым воздушными потоками. Каждый из них имеет свои отличительные особенности, которые определяют основное предназначение для каждого типа рекуператора.

Пластинчатый перекрестноточный рекуператор

В основе конструкции пластинчатого рекуператора лежат тонкостенные панели, соединенные поочередно таким образом, чтобы чередовать пропуск между ними разнотемпературных потоков под углом 90 градусов. Одной из модификаций такой модели является устройство с оребренными каналами для прохода воздуха. Оно обладает более высоким коэффициентом теплообмена.

Поочередный пропуск теплого и холодного потока воздуха через пластины реализуют за счет загиба краев пластин и герметизацией соединений полиэфирной смолой

Теплообменные панели могут быть выполнены из различного материала:

  • медь, латунь и сплавы на основе алюминия обладают хорошей теплопроводностью и не подвержены ржавчине;
  • пластмасса из полимерного гидрофобного материала с высоким коэффициентом теплопроводности обладают малым весом;
  • гигроскопическая целлюлоза позволяет проникать конденсату через пластину и попадать обратно в помещение.

Недостатком является возможность образования конденсата при низких температурах. По причине небольшого расстояния между пластинами влага или наледь существенно увеличивают аэродинамическое сопротивление. В случае обмерзания необходимо перекрытие входящего потока воздуха для отогрева пластин.

Преимущества пластинчатых рекуператоров следующие:

  • низкая стоимость;
  • долгий срок службы;
  • длительный период между профилактическим обслуживанием и простота его проведения;
  • небольшие габариты и масса.

Такой тип рекуператора наиболее распространен для жилых и офисных помещений. Также его используют и в некоторых технологических процессах, например для оптимизации сгорания топлива при работе печей.

Барабанный или роторный тип

Принцип действия роторного рекуператора основан на вращении теплообменника, внутри которого расположены слои гофрированного металла, обладающего высокой теплоемкостью. В результате взаимодействия с выходящим потоком происходит нагрев сектора барабана, который впоследствии отдает тепло поступающему воздуху.

Мелкоячеистый теплообменник роторного рекуператора подвержен засорению, поэтому особенно внимательно нужно отнестись к качественной работе фильтров тонкой очистки

Преимущество роторных рекуператоров следующие:

  • достаточно высокий КПД по сравнению с конкурирующими типами;
  • возврат большого количества влаги, которая в виде конденсата остается на барабане и испаряется при контакте с поступающим сухим воздухом.

Этот тип рекуператора реже используют для жилых зданий при поквартирной или коттеджной вентиляции. Часто его применяют в крупных котельных для возврата тепла к печам или для обширных помещений промышленного или торгово-развлекательного назначения.

Однако у этого типа устройств есть существенные недостатки:

  • относительно сложная конструкция с наличием подвижных частей, включающая электромотор, барабан и ременной привод, что требует постоянного обслуживания;
  • повышенный уровень шума.

Иногда для устройств такого типа можно встретить термин “регенеративный теплообменник”, что более правильно чем “рекуператор”. Дело в том, что незначительная часть выходящего воздуха попадает обратно по причине неплотного прилегания барабана к корпусу конструкции.

Это накладывает дополнительные ограничения на возможность использования устройств такого типа. Например, в качестве теплоносителя нельзя использовать загрязненный воздух от печей отопления.

Система на основе трубок и кожуха

Рекуператор трубчатого типа состоит из расположенных в утепленном кожухе системы тонкостенных трубок небольшого диаметра, по которым происходит приток наружного воздуха. По кожуху производят вывод теплой воздушной массы из помещения, которая обогревает входящий поток.

Вывод теплого воздуха необходимо осуществлять именно по кожуху, а не через систему трубок, так как удалить конденсат из них невозможно

Основные преимущества трубчатых рекуператоров следующие:

  • высокий КПД, благодаря противоточному принципу движения теплоносителя и поступающего воздуха;
  • простота конструкции и отсутствие подвижных частей обеспечивает низкий уровень шума и редко возникающую необходимость в обслуживании;
  • долгий срок службы;
  • наименьшее сечение среди всех типов устройств рекуперации.

Трубки для устройства такого типа используют или легкосплавные металлические или, что реже, – полимерные. Эти материалы не гигроскопичны, поэтому при значительной разнице температур потоков возможно образовании интенсивного конденсата в кожухе, что требует конструктивного решения по его удалению. Еще одним недостатком является то, что металлическая начинка обладает значительным весом, несмотря на небольшие габариты.

Простота конструкции трубчатого рекуператора делает этот тип устройств популярным для самостоятельного изготовления. В качестве внешнего кожуха обычно используют пластиковые трубы для воздуховодов, утепленные пенополиуретановой скорлупой.

Устройство с промежуточным теплоносителем

Иногда приточный и вытяжной воздуховоды расположены на некотором расстоянии друг от друга. Такая ситуация может возникнуть по причине технологических особенностей здания или санитарных требований по надежному разделению воздушных потоков.

В этом случае используют промежуточный теплоноситель, циркулирующий между воздуховодами по изолированному трубопроводу. В качестве среды для передачи тепловой энергии используют воду или водно-гликолевый раствор, циркуляцию которого обеспечивают работой теплового насоса.

Рекуператор с промежуточным теплоносителем представляет собой объемное и дорогое устройство, чье применение экономически оправдано для помещений с большим площадями

В том случае, если есть возможность использовать другой тип рекуператора, то лучше не применять систему с промежуточным теплоносителем, так как она обладает следующими существенными недостатками:

  • низкий КПД по сравнению с другими типами устройств, поэтому для небольших помещений с малым расходом воздуха такие устройства не применяют;
  • значительный объем и вес всей системы;
  • необходимость дополнительного электрического насоса для циркуляции жидкости;
  • повышенный шум от работы насоса.

Существует модификация этой системы, когда вместо принудительной циркуляции теплообменной жидкости используют среду с низкой точкой кипения, например фреон. В этом случае движение по контуру возможно естественным образом, но только в том случае если приточный воздуховод расположен над вытяжным.

Такая система не требует дополнительных затрат электроэнергии, но работает на обогрев только при значительном перепаде температур. Кроме того, необходима точная настройка точки изменения агрегатного состояния теплообменной жидкости, которая может быть реализована методом создания нужного давления или определенного химического состава.

Основные технические параметры

Зная требуемую производительность системы вентиляции и КПД теплообмена рекуператора легко рассчитать экономию на обогреве воздуха для помещения при конкретных климатических условиях. Сравнив потенциальную выгоду с затратами на покупку и обслуживание системы можно обоснованно сделать выбор в пользу рекуператора или стандартного калорифера.

Часто производители оборудования предлагают модельную линейку, в которой вентиляционные блоки с похожим функционалом отличаются объемом воздухообмена. Для жилых помещений этот параметр необходимо рассчитывать согласно таблице 9.1. СП 54.13330.2016

Коэффициент полезного действия

Под коэффициентом полезного действия рекуператора понимают эффективность теплопередачи, которую рассчитывают по следующей формуле:

K = (Тп – Тн) / (Тв – Тн)

В которой:

  • Тп – температура поступающего воздуха внутрь помещения;
  • Тн – температура наружного воздуха;
  • Тв – температура воздуха в помещении.

Максимальное значение КПД при штатной скорости потока воздуха и определенном температурном режиме указывают в технической документации устройства. Его реальный показатель будет немного меньше.

В случае самостоятельного изготовления пластинчатого или трубчатого рекуператора для достижения максимальной эффективности теплопередачи необходимо придерживаться следующих правил:

  • Наилучший теплообмен обеспечивают противоточные устройства, затем перекрестноточные, а наименьшую – с однонаправленным движением обоих потоков.
  • Интенсивность теплообмена зависит от материала и толщины стенок, разделяющих потоки, а также от длительности нахождения воздуха внутри устройства.

Зная КПД рекуператора можно рассчитать его энергоэффективность при различных температурах наружного и внутреннего воздуха:

Е (Вт) = 0,36 х Р х К х (Тв – Тн)

где Р (м3/час) – расход воздуха.

Расчет эффективности рекуператора в денежном эквиваленте и сравнение с затратами на его приобретение и монтаж для двухэтажного коттеджа общей площадью 270 м2 показывает целесообразность установки такой системы

Стоимость рекуператоров с высоким КПД достаточно велика, они имеют сложную конструкцию и значительные размеры. Иногда можно обойти эти проблемы установкой нескольких более простых устройств таким образом, чтобы поступающий воздух последовательно проходил через них.

Производительность вентиляционной системы

Объем пропускаемого воздуха определяется статическим давлением, которое зависит от мощности вентилятора и основных узлов, создающих аэродинамическое сопротивление. Как правило, точный его расчет невозможен ввиду сложности математической модели, поэтому для типовых моноблочных конструкций проводят экспериментальные исследования, а для индивидуальных устройств осуществляют подбор компонентов.

Мощность вентилятора необходимо выбирать с учетом пропускной способности устанавливаемых рекуператоров любых типов, которая в технической документации указана как рекомендуемая скорость потока или объем пропускаемого устройством воздуха за единицу времени. Как правило, допустимая скорость воздуха внутри устройства не превышает значения 2 м/с.

В противном случае на высоких скоростях в узких элементах рекуператора происходит резкий рост аэродинамического сопротивления. Это приводит к лишним затратам электроэнергии, неэффективном прогреве наружного воздуха и сокращения срока службы вентиляторов.

График зависимости потери давления от скорости потока воздуха для нескольких моделей рекуператоров высокой производительности показывает нелинейный рост сопротивления, поэтому необходимо придерживаться требований по рекомендуемому объему воздухообмена указываемых в технической документации устройства

Изменение направления потока воздуха создает дополнительное аэродинамическое сопротивление. Поэтому при моделировании геометрии воздуховода внутри помещения желательно минимизировать количество поворотов труб на величину 90 градусов. Диффузоры для рассеивания воздуха также увеличивают сопротивление, поэтому желательно не использовать элементы со сложным рисунком.

Загрязненные фильтры и решетки создают значительные помехи движению потока, поэтому их необходимо периодически прочищать или менять. Одним из эффективных способов оценки засоренности является установка датчиков, отслеживающих перепад давления на участках до фильтра и после него.

Выводы и полезное видео по теме

Принцип работы роторного и пластинчатого рекуператора:

Замер КПД рекуператора пластинчатого типа:

Бытовые и промышленные системы вентиляции с интегрированным рекуператором доказали свою энергетическую эффективность по сохранению тепла внутри помещений. Сейчас существует множество предложений по продаже и установке таких устройств как в виде готовых и опробованных моделей, так и по индивидуальному заказу. Провести расчет необходимых параметров и выполнить монтаж можно самостоятельно.

Если при ознакомлении с информацией появились вопросы или вы нашли неточности в нашем материале, пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.

sovet-ingenera.com

Приточно-вытяжная вентиляция

Вентиляция жилища подразумевает два противоположных процесса — приток и отток воздуха. В жилом помещении требуется постоянное обновление воздушных масс и от того, как работает система вентиляции, зависит самочувствие всех жителей дома или квартиры. Проблемы могут возникать как с поступлением свежего воздуха с достаточным количеством кислорода, так и вытяжкой отработанного загрязненного воздушного потока. Современная приточно-вытяжная вентиляция, как система обеспечения полноценной циркуляции воздуха, отлично справится с решением проблемы вентилирования жилых помещений.

Виды вентиляционных систем

Вентиляция помещения бывает нескольких видов:

  1. Естественная – так называемая вентиляция с естественным побуждением. Функционирует за счет разницы температуры и давления внутри и снаружи помещения.
  2. Принудительная — приток и отток воздушных масс происходит за счет механических приборов (вентиляторов).
  3. Комбинированная – только приток или отток воздушных масс происходит за счет механических приборов (вентиляторов).
Схема работы принудительных проветривателей

Принцип действия естественного типа вентиляции представляет собой приток чистого воздушного потока и отток уже загрязненного и насыщенного углекислым газом воздуха без использования механических средств. Поступление нового воздуха осуществляется через окна, форточки и открытые двери балкона. Вытяжка отработанного — через вентлюки, расположенные в санузлах, кухне и кладовках.

В небольших жилых помещениях естественной вентиляции вполне достаточно. Для многокомнатной квартиры или загородного 2- или 3-этажного дома потребуется установка принудительной приточно-вытяжной вентиляционной системы.

Чтобы понять, нужно ли модифицировать естественную вентиляцию, необходимо обратить внимание на определенные показатели наличия плохого воздухообмена и разобраться, что требуется усилить — приток или отток воздуха. Часто необходимо сделать принудительным как поступление воздуха, так и его вытяжку.

Существует несколько признаков, свидетельствующих о том, что в квартире недостаточно хорошо функционирует вентиляция:

  • повышенная влажность в летний период
  • низкая влажность в зимнее время года
  • на кухне, в санузле появляется плесень на стенах
  • чувствуется постоянная духота
  • воздух имеет запах пищи или канализационных стоков

Если обнаружены хотя бы несколько из вышеперечисленных факторов, то установка принудительной системы вентиляции является обязательной для данного помещения. Она поможет избавиться от различных заболеваний дыхательной системы всех жильцов дома или квартиры, наличия повышенного уровня углекислого газа, скопления неприятных запахов, развития патогенных микроорганизмов.

Достоинства принудительной (механической) приточно-вытяжной системы вентиляции:

  1. Качественная фильтрация воздуха.
  2. Увлажнение и ионизация частиц.
  3. Процесс как подогрева, так и охлаждения воздуха.

Оборудование для вентиляционной системы

Существует несколько способов организации эффективной системы воздухообмена в квартире или частном доме. Они различаются между собой:

  • по трудоемкости установки – самостоятельный монтаж или с привлечением сторонних специалистов;
  • по финансовым вложениям;
  • по соотношению положительных и отрицательных моментов в устройстве принудительной вентиляции – улучшения циркуляции воздуха всего помещения, но при этом дополнительные расходы энергии, сложность монтажа, уровень эффективности и т.д.;
  • по охвату — местные (локальные) системы вентиляции для определенного помещения или централизованные, с системой воздуховодов, объединенных центральной вентшахтой.
Проветриватель — обеспечивает принудительный приток и очистку воздуха.

Оконные и канальные вентиляторы

Самым простым решением проблемы усиления вентиляции будет использование специальных вентиляторов, нагнетающих и вытягивающих воздух. Различают 2 типа подобных устройств: оконные (форточные) и канальные вентиляторы.

Чаще всего вентилятор для усиления притока воздуха устанавливается в проём форточки на кухне, дальних комнатах большой площади, а так же спальнях. Канальные монтируются в вентлюки уже существующей вытяжной вентиляции.

Есть свои минусы данной схемы вентиляции:

  1. Сложно самостоятельно подобрать необходимый по мощности вентилятор.
  2. Размер форточки и вытяжных люков ограничивают в выборе вентилирующего прибора, так как уже имеют определенные размер и форму.
  3. Есть угроза, что система механической вентиляции окажется малоэффективной и не сможет на сто процентов избавить от последствий плохо функционирующей вентиляции данного жилого помещения.
  4. Не стоит забывать о том, что воздух с улицы нагнетается той температуры и влажности, какой имеется в наличии на данный момент. Соответственно, зимой это будет холодный воздух, а летом горячий. Данный факт повлечет увеличение расходов на отопление (охлаждение) вентилируемого помещения.

Более сложный по установке способ решения проблемы с общеобменной вентиляцией будет установка в стены, отделяющие комнаты от улицы, проветривателей.

Стенные проветриватели

Проветриватели, как специальные устройства для дополнительного притока воздуха, бывают нескольких видов:

  1. Пассивные проветриватели — усиливают естественный приток воздуха в комнаты. Представляют собой специальное отверстие в стене, декорированное жалюзями (для регулирования потока воздуха), либо просто решетками (для ограждения от проникновения мусора или насекомых внутрь помещения).
  2. Клапаны — при полном закрытии не пропускают воздух. При открытии позволяют более точно регулировать силу потока воздушной массы и движение воздуха в комнате за счет расположенных сбоку отверстий клапана (воздух успевает согреться и не создается сквозняка).
  3. Принудительные проветриватели работают за счет реверсивных вентиляторов, что дает возможность организовать приточно-вытяжную вентиляцию только жилых комнат. Часть вентиляторов будет нагонять воздух с улицы, а остальные работать на вытягивание использованного воздуха. При хорошо закрытых дверях между жилыми и техническими помещениями данная система позволяет избежать попадания неприятных запахов из кухни или санузла в остальные комнаты.

Недостаток проветривателей заключается в невозможности регулировать температуру поступающего воздуха, даже если располагать их в непосредственной близости от радиаторов. Поэтому стоит обратить внимание на организацию вентиляции дома при помощи специальной приточной установки.

Принудительная приточная установка

Приточная установка монтируется в комплекте с вентканалами для принудительного нагнетания чистого воздуха. Устанавливается прибор на лоджии квартиры либо в подсобном помещении дома. Обычно установка снабжена системой фильтров. Корпус аппарата не позволяет шуму вентилятора беспокоить жильцов, а встроенный калорифер регулирует температуру поступающего воздуха. Более дорогие приточные установки не только подогревают и очищают воздух, но и снабжены специальными обеззараживателями и ионизаторами, что немаловажно для комфортного проживания. Отток воздуха может происходить как принудительно, так и естественно через вытяжные люки центральной вентшахты.

Приточная вентиляторная установка — это значительные финансовые расходы.  Из-за дополнительного монтажа воздуховодов её монтирование возможно только на начальном этапе строительства, либо во время капитального ремонта дома. Выбор приточной установки, как и ее монтаж, требует точного расчета следующих параметров:

  • мощности самой установки
  • сечения и формы воздуховодов
  • грамотной схемы приточной вентиляции

Главными минусами данного устройства является дополнительный расход электроэнергии, а также сложность регулировки необходимой температуры поступающего воздуха, так как не все установки имеют встроенный калорифер. Если необходимо иметь прибор, целиком обеспечивающий полноценный контроль циркуляции воздушных масс внутри помещения с большим количеством комнат, то стоит задуматься о монтаже приточно-вытяжной системы вентилирования с рекуперацией воздуха.

Вентиляционная система с принудительной приточной установкой

Приточно-вытяжная установка с функцией рекуперации воздуха

Рассмотренная выше установка хорошо проводит воздухообмен, но и теплый воздух очень быстро покидает вентилируемое помещение. Избавиться от данного негативного момента позволяет система рекуперации воздуха.

Устройство системы рекуперации приточно-вытяжной установки заключается в наличии следующих деталей:

  1. Блока, объединяющего два потока с входящим и выходящим воздухом
  2. Камеры рекуперации
  3. Вентиляторов для принудительной циркуляции двух потоков воздуха
  4. Фильтров очистки на входе и выходе блока системы
  5. Калорифера для дополнительного подогрева приточного воздуха.
Устройство системы вентиляции с рекуператором

Принцип действия основного блока данной системы заключается в том, что внутри камеры рекуперации происходит процесс, позволяющий забрать часть тепла у выходящего воздушного потока и насытить им свежий воздух из люка притока. При этом процессе все запахи выводятся наружу (то есть забирается только тепло). Данный механизм позволяет существенно экономить на отоплении жилых помещений, что важно в частных домах с несколькими этажами.

Схема монтажа рассмотренной системы имеет в два раза больше воздуховодов, так как в одни подается чистый воздух, а через другие вытягивается уже отработанный.

Самым оптимальным по эффективности решением проблемы с общеобменной вентиляцией является установка приточно-вытяжной вентиляции с рекуперацией воздуха. Даже затраты на приобретение и монтаж всех деталей системы окупятся за небольшой промежуток времени. Расходы энергии на обогрев жилого помещения уменьшаться вдвое, а чистый воздух будет способствовать комфортному проживанию в доме или квартире. Приобретая систему данного типа, необходимо позаботится о наличии в ее составе автоматики для контроля температуры и системы оповещения при проблемах с вентиляторами или фильтрами, для более независимого функционирования системы вентиляции.

Самостоятельный монтаж вентиляции: основные этапы работы

Монтирование вентиляционной системы доступно любому, имеющему опыт работы с инструментами. Выполняя установку приточно-вытяжной вентиляции своими руками, необходимо учесть ряд правил и особенностей:

  1. Сначала необходимо произвести расчет всех параметров для того, чтобы система полностью соответствовала помещению (к примеру: при объеме 350 кубометров подача воздуха должна выполняться со скоростью примерно 200 кубометров за один час).
  2. Правильный расчет напрямую зависит:
  • от диаметра вентиляционных труб

Есть смысл монтировать прямоугольные вентканалы с пропорцией сторон 3:1. Это поможет сильно не сокращать высоту потолков, но уменьшить шум от движения воздуха.

Чем длиннее вентканал, тем больше теряется в эффективности циркуляции воздуха.

  • производительности установленных в системе вентиляторов

После полного расчета длины и сечения всех каналов и суммарного расчета площади всех вентилируемых помещений можно подбирать установку, опираясь на показатели мощности в ее инструкции по эксплуатации.

  1. Осуществляется установка специальных рукавов, всех необходимых частей строго в соответствии с предложенной схемой.
  2. Профессионалы советуют в первую очередь проводить центральный воздуховод. Потом от него выполнять разводку во все комнаты, имеющиеся в доме или квартире.

В том случае, если вы самостоятельно занимаетесь монтажом системы вентиляции, не забудьте обратить внимание на настройку ее функционирования. Регулировка выполняется двумя способами – автоматически или вручную. Если вы заинтересованы в экономии потребляемой электроэнергии, то здесь подойдет ручной тип настройки.

Какой именно вариант устройства и монтажа вентиляции будет выбран, зависит от возможностей и требований конкретного случая. В одном случае хватит оконного и канального варианта, в другом потребуется установка приточно-вытяжной вентиляции с системой рекуперации. Главное, чтобы улучшенная или впервые монтируемая вентиляционная система полностью обеспечивала потребности в полноценной циркуляции воздуха, как залога комфортной и здоровой среды проживания.

proventilation.ru


Смотрите также